
Lecture 12: Authenticated Encryption, continued

• Homework 6 has been posted, due after spring break

• We need to adjust question 2; please wait until we post an update

• No discussion section tomorrow

• Have a good spring break!

Crypto in this course

Random(ish)
permutations

Block
ciphers

Hash
functions

???

Protected
communication

???

??????

Utilitarian
tools

Elegant
protocols

Combining Enc and MAC generically

MAC then Enc

P || pad

MACEnc

TC

P

MAC

Enc

T
pad

C

P || pad

MAC

Enc

TC

Confidentiality None CPA CCA!

Integrity Plaintext integrity: Cannot make CT that decrypts to
message that sender never encrypted

Ciphertext integrity: Cannot make new
valid CTs, only know sender-made ones

Enc and MAC Enc then MAC

Security Definitions: Encryption xor Authentication

IND$-CPA for nonce-respecting Eve:

Restriction: Mallory can’t re-use nonce

EU-CMA:

Restriction: Mallory cannot verify a
MAC tag that Alice produced

P, N

$

P, N

C C

Enc$

Tag$

Verify$ No!

Tag$

Security Definition: Encryption and Authentication

IND$-CPA for nonce-respecting Eve: EU-CMA:

P, N

$

P, N

C C

Enc$

Tag$

Verify$ No!

Tag$

$AuthEnc

AuthDec No!

Restrictions

• Cannot reuse nonce

• Cannot ask to decrypt
CT made by Alice

Def. Authenticated Encryption with Associated Data (AEAD)

• KeyGen: randomly choose K, as usual

• AuthEncK(authenticated data A,
private + auth data P, nonce N) →
ciphertext C of length |C| ≥ |P|

• AuthDecK(C, A, N) → P or error

Benefits

• Better security: satisfies Moxie’s doom principle, resists some side channel attacks

• Simplicity: developers have fewer decisions (i.e., opportunities for mistakes)

• Performance: save in time + space costs, also often only need 1 key

Auth EncK

P

C

A, N

Auth DecK

C, A, N

P / error

Counter with CBC-MAC (CCM) [Housley, Whiting, Ferguson 2003]

Novelties

• CTR and CBC-MAC can use same key

• Counter generation design solves
CBC-MAC’s length extension problem

Drawbacks

• CTR mode !-> nonce reuse is
catastrophic for privacy

• Using CBC mode for the MAC prevents
parallelization and pipelining

CBC-MAC BK

P, A, N

tag T

CTR BK

T, P

ciphertext C

N, A, |P|

Gen counter

Performance issues with CCM

1. Running time: 2|P| block cipher calls

2. Not streaming-friendly: can’t forget P after CBC-MAC, need it again for CTR

3. Cannot pipeline: must finish one CBC block cipher call before starting the next

CBC-MAC BK

P, A, N

tag T

CTR BK

T, P

ciphertext C

N, A, |P|

Gen counter

Performance comparison of CBC and CTR modes

Throughput of symmetric encryption on Skylake Core i5 running at 2.7 GHz

Data taken from https://cryptopp.com/benchmarks.html

Mode of operation Key length GiB/second Cycles per byte
AES in CTR mode 128 bit 4.4 0.57

192 bit 3.8 0.67

256 bit 3.3 0.77

AES in CBC mode 128 bit 1.0 2.40

192 bit 0.90 2.80

256 bit 0.79 3.20

https://cryptopp.com/benchmarks.html

Performance vs message length

Message length, in bytes

Cycles 
per byte

This data is for an older Clarkdale CPU

EAX mode [Bellare, Rogaway, Wagner 2004]

• Released one year after CCM

• Replaces CBC-MAC with OMAC

• Well… CMAC used in NIST standard

• Novelties

• Can pre-process associated data!
(A can be reused across multiple P)

• CTR and OMAC can be executed
concurrently for online streaming

• Can re-use key for CTR + all OMACs

N P A

Galois/counter mode (GCM) [McGrew, Viega 2005]

• Novelty

• Only one round of block cipher calls

• Intel’s AES-NI includes a PCLMULQDQ
instruction for multH in hardware

• Drawbacks

• Assumes block length = 128 (built for
AES)

• Very difficult to implement in software,
good chance of doing it wrong

• Extensive cryptanalysis has exposed
weak keys !=> CAESAR competition

Counter 
mode

CBC-MAC  
style

Speed of GCM in hardware (2013)

GCM: widespread use in practice (Dec 2017)

What features could we add?

• Even more speed:
only |P| block cipher calls (and nothing else)

• Even more security:
removing the need for the nonce N altogether

What features could we add?

• Even more speed:
only |P| block cipher calls (and nothing else)

• Even more security:
removing the need for the nonce N altogether

Offset codebook mode (OCB) [Rogaway 2002]

History

• Jutla 2001:
Integrity aware
parallelizable
mode (IPAM)

• Rogaway 2002:
OCB

Basic idea: XEX
with finalization

OCB’s licenses

Taken from http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm

1. License for Open-Source Software Implementations of OCB (1/9/13)
Under this license, you are authorized to make, use, and distribute open-source software
implementations of OCB. This license terminates for you if you sue someone over their open-source
software implementation of OCB claiming that you have a patent covering their implementation.

2. General License for Non-Military Software Implementations OCB (1/10/13)
This license does not authorize any military use of OCB. Aside from military uses, you are authorized
to make, use, and distribute (1) any software implementation of OCB and (2) non-software
implementations of OCB for noncommercial or research purposes. You are required to include
notice of this license to users of your work so that they are aware of the prohibition against military
use. This license terminates for you if you sue someone over an implementation of OCB authorized
by this license claiming that you have a patent covering their implementation.

3. Patent License for OpenSSL (11/13/13)
This license was provided at the request of the OpenSSL Software Foundation to specifically
authorize use of OCB in OpenSSL.

What features could we add?

• Even more speed:
only |P| block cipher calls (and nothing else)

• Even more security:
removing the need for the nonce N altogether

GCM nonce reuse: destroys privacy

• For privacy, GCM = CTR

• CTR mode with repeated nonces
= two-time pad

• We broke privacy in Lab 2

’ ’

’’

GCM nonce reuse: destroys authenticity

GCM nonce being chosen randomly: hurts authenticity

Wait… why did we want nonces in the first place?

• Main purpose for introducing nonces was to hide frequency analysis

• Hide from Mallory whether Alice is encrypting the same message twice

• Then, we built systems that rely upon the nonce for more than this

• How to ensure that nonce-reuse only reveals frequency analysis?

• Idea: uniqueness of the message itself should also serve as a “nonce”

Misuse-resistant AE

• Novelty: Repeating N has limited damage

• No impact to authenticity

• Privacy damaged only to the extent that an adversary can detect repetitions

• Drawback: Cannot make just one pass through P

• Every bit of C must depend on every bit of P

• So, cannot output first bit of C before reading last bit of P

• Corollary: can omit the nonce entirely if you want, Enc can be deterministic!

• Note how we’ve come full circle on this question

Deterministic Authenticated Encryption (DAE)

Provides key wrapping!

• Adversary cannot produce a valid
C without knowing K

• Even C corresponding to a
message P that depends on the
key K somehow

Foreshadowing: will need key
wrapping in full disk encryption

ΠAuthEnc$

AuthDec$ No

P, A

C

C, A

P

Synthetic Initialization Vector (SIV) [Rogaway, Shrimpton 2006]

• Novelty

• Leverages structure of P, A to
ensure uniqueness of CTR’s nonce

• Can be deterministic

• Applies to a wide range of MACs

• Drawbacks

• 2 passes, 2 keys

• Must decrypt, then verify

• Cannot truncate tag

MAC

N

tag T

Nonce
Enc

ciphertext C

A P

Combining GCM and SIV
Haswell 1.17 cycle/byte

Broadwell 0.92 cycle/byte

Result: Protected messages, given a shared key

private & auth
message P

key K

??

key K

recover
P = Dec(K, C)

or receive error

fake file
s

error m
essages

After spring break: How to generate and distribute keys

key K key K

