Lecture 12: Authenticated Encryption, continued

« Homework 6 has been posted, due after spring break

 We need to adjust question 2; please wait until we post an update
* No discussion section tomorrow

e Have a good spring break!

Crypto in this course

g o:u--bﬂ‘

N s

Protected
Elegant |]
- communication |

protocols —

Utilitarian

Block |)
tools

| ciphers] | functions ;

N

i Random(ish) i
| permutations |

Combining Enc and MAC generically

Enc and MAC MAC then Enc Encthen MAC

P 1l pad | P § P Il pad
pad
T
c T
C C T
None CPA CCA!
Plaintext integrity: Cannot make CT that decrypts to Ciphertext integrity: Cannot make new

message that sender never encrypted valid CTs, only know sender-made ones

Security Definitions: Encryption xor Authentication

INDS-CPA for nonce-respecting Eve: EU-CMA: |

[
P, N P, N
. /4
\> ! 4/ :
C C
[

Restriction: Mallory cannot verify a
Restriction: Mallory can’t re-use nonce MAC tag that Alice produced

Security Definition: Encryption and Authentication

INDS-CPA for nonce-respecting Eve: EU-CMA:

. Restrictions

e Cannot reuse nonce

e Cannot ask to decrypt
CT made by Alice

Def. Authenticated Encryption with Associated Data (AEAD)

p A, N C,AN
» KeyGen: randomly choose K, as usual l l l

» AuthEnci(authenticated data A,
private + auth data P, nonce N) -
ciphertext C of length |C| > | P| l
P/ error

« AuthDeci(C, A, N) - P or error

O e

Benefits
e Better security: satisfies Moxie’s doom principle, resists some side channel attacks
« Simplicity: developers have fewer decisions (i.e., opportunities for mistakes)

e Performance: save In time + space costs, also often only need 1 key

Counter with CBC-MAC (CCM) [Housley, Whiting, Ferguson 2003]

N, A, IPI
|

V
(Gen counter

tag T ciphertext C
Novelties Drawbacks
 CTR and CBC-MAC can use same key « CTR mode — nonce reuse iIs

. . catastrophic for privacy
 Counter generation design solves

CBC-MAC's length extension problem Using CBC mode for the MAC prevents
parallelization and pipelining

Performance issues with CCM

N, A, IP
|

V
(Gen counter

tag T ciphertext C

1. Running time: 2|P| block cipher calls
2. Not streaming-friendly: can’t forget P after CBC-MAC, need it again for CTR

3. Cannot pipeline: must finish one CBC block cipher call before starting the next

Performance comparison of CBC and CTR modes

Throughput of symmetric encryption on Skylake Core 15 running at 2.7 GHz

Data taken from https:/ /cryptopp.com/benchmarks.html

AES in CTR mode 128 bit 0.57
192 bit 3.8 0.6/
256 bit 3.3 0.77
AES in CBC mode 128 bit 1.0 2.40
192 bit 0.90 2.80

256 bit 0.79 3.20

https://cryptopp.com/benchmarks.html

Performance vs message length

Cycles

per byte
—_— This data is for an older Clarkdale CPU

19 o=
. : : CCM

18—' °° % & s

o] = X8615.64.ni GOM

16— .. Time OCB
15 — P
14— *0

| | | I I I | I I
100 200 300 400 500 600 700 200 900 1000

Message length, in bytes

EAX mode [Bellare, Rogaway, Wagner 2004]

N P A
 Released one year after CCM
OMAC?, OMAC
e Replaces CBC-MAC with OMAC
e Well... CMAC used in NIST standard SN T
* Novelties i
e Can pre-process assoclated data! Ve
(A can be reused across multiple P) OMACK
e CTR and OMAC can be executed e
concurrently for online streaming
H
e Can re-use key for CTR + all OMACs

Counter O

Counter
mode

CBC-MAC
style

Plaintext 1

‘
[=] [=]

) 4) 4
—»EB Plaintext 2 —>€9

4 4
Ciphertext 1 Ciphertext 2

=S
T

Auth Data 1

~
[mult H
J

=

len(A) || len(C

) =D

Auth Tag

Galois/counter mode (GCM) [McGrew, Viega 2005]

Counter 1 Counter 2

l
=

 Novelty

 Only one round of block cipher calls

e Intel’s AES-NI includes a PCLMULQDQ
Instruction for multy in hardware

% '% Drawbacks

« Assumes block length =128 (built for
AES)

e Very difficult to implement in software,
good chance of doing It wrong

« Extensive cryptanalysis has exposed
weak keys = CAESAR competition

Speed of GCM in hardware (2013)

25

Cycles per Byte - lower is better

N
o
!

[N
o
|

[N
o
]

o
|

The performance order is reversed!

AES-NI accelerate the encryption

PCLMULQDQ GF(2'%8) stuff (w/o tables)

pre-AES NI

Core i7-2600K

S. Gueron.

RWC 2013

Core i7-3770

B AES-GCM
m AES-SHA1
RC4-SHA1

GCM: widespread use in practice (Dec 2017)

ECDHE-ECDSA-AES128-GCM-SHA256 Secure Connection
67%
The connection to this site is encrypted and

authenticated using a strong protocol (QUIC), a strong
key exchange (ECDHE RSA with X25519), and a strong
cipher{(AES_128_GCM)]

ECDHE-RSA-AES128-SHA
6%
: ‘——- Other

2%

ECDHE-RSA-CHACHA20-POLY1305
4%

ECDHE-RSA-AES128-GCM-SHA256
14%

ECDHE-ECDSA-AES128-SHA
1%
ECDHE-ECDSA-CHACHA20-POLY1305
6%

What features could we add?

 Even more speed:
only |P| block cipher calls (and nothing else)

e Even more security:
removing the need for the nonce N altogether

What features could we add?

 Even more speed:
only |P| block cipher calls (and nothing else)

History

e Jutla 2001:
Integrity aware

parallelizable
mode (IPAM)

* Rogaway 2002:
OCB

Basic iIdea: XEX
with finalization

M[1)

M (2]

M[m — 1]

Offset codebook mode (OCB) [Rogaway 2002]

M [m)]

l

len

4

) 4

Pe—1rL-x1

Pe— Z[m)]

X [m]

T hir

OCB'’s licenses

Taken from http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm

1.

License for Open-Source Software Implementations of OCB (1/9/13)

Under this license, you are authorized to make, use, and distribute open-source software
Implementations of OCB. This license terminates for you if you sue someone over their open-source
software implementation of OCB claiming that you have a patent covering their implementation.

General License for Non-Military Software Implementations OCB (1/10/13)

This license does not authorize any military use of OCB. Aside from military uses, you are authorized
to make, use, and distribute (1) any software implementation of OCB and (2) non-software
Implementations of OCB for noncommercial or research purposes. You are required to include
notice of this license to users of your work so that they are aware of the prohibition against military
use. This license terminates for you if you sue someone over an implementation of OCB authorized
by this license claiming that you have a patent covering their implementation.

Patent License for OpenSSL (11/13/13)

This license was provided at the request of the OpenSSL Software Foundation to specifically
authorize use of OCB in OpenSSL.

What features could we add?

e Even more security:
removing the need for the nonce N altogether

GCM nonce reuse: destroys privacy

e For privacy, GCM = CTR

 CTR mode with repeated nonces
= two-time pad

 We broke privacy In Lab 2

GCM nonce reuse: destroys authenticity

Nonce-Disrespecting Adversaries: Practical [7 7
Forgery Attacks on GCM in TLS [Efwk Eick : Efwk
. * H .- § Pl — PQ e
Hanno Bock Aaron Zauner Sean Devlin
Juraj Somorovsky! Philipp Jovanovic! Cy %
_____ R e S — E—
X l X
May 17, 2016 ! .QF : .
Gmuly Gmuly Gmuly
I X;
Abstract Al len(A) || len(C) —»
We investigate nonce reuse issues with the GCM block cipher mode as
used in TLS and focus in particular on AES-GCM, the most widely deployed o Gmuly
variant. With an Internet-wide scan we identified 184 HTTPS servers re- hash ke_y H = Enc (0)‘ <
peating nonces, which fully breaks the authenticity of the connections.

Affected servers include large corporations, financial institutions, and a
credit card company. We present a proof of concept of our attack allowing >
olvilate the authenticty of affected HTTPS connectionswhich in turn i
can be utilized to inject seemingly valid content into encrypted sessions.

Furthermore we discovered over 70,000 HTTPS servers using random |a common root in the authentication key can be constructed. Factoring

nonces, which puts them at risk of nonce reuse if a large amount of datais |these polynomials and finding the common root yields the correct value
sent over the same connection. for H.

GCM nonce being chosen randomly: hurts authenticity

Nonce-Disrespecting Adversaries: Practical n |[p
Forgery Attacks on GCM in TLS 22 | 0.000000
23 | 0.000002
Hanno Bock’ Aaron Zauner™* Sean Devlin’ 24 | 0.000008
| N N 25 | 0.000031
Juraj Somorovsky? Philipp Jovanovic 26 | 0.000122
May 17, 2016 27 | 0.000488
28 | 0.001951
29 | 0.007782
Abstract 30 | 0.030767
We investigate nonce reuse issues with the GCM block cipher mode as
used in TLS and focus in particular on AES-GCM, the most widely deployed 31 0.117503
variant. With an Internet-wide scan we identified 184 HTTPS servers re- 37 0.393469
peating nonces, which fully breaks the authenticity of the connections.
Affected servers include large corporations, financial institutions, and a 33 0.864665
credit card company. We present a proof of concept of our attack allowing 34 0.999665
to violate the authenticity of affected HTTPS connections which in turn
can be utilized to inject seemingly valid content into encrypted sessions. 35 1.000000
Furthermore we discovered over 70,000 HTTPS servers using random . . .
nonces, which puts them at risk of nonce reuse if a large amount of data is F 1gure 2: Pr Obablhty P for nonce collision

sent over the same connection.

with 2™ nonces of 64 bit size

Wait... why did we want nonces in the first place?

* Main purpose for introducing nonces was to hide frequency analysis

 Hide from Mallory whether Alice Is encrypting the same message twice

 Then, we built systems that rely upon the nonce for more than this

 How to ensure that nonce-reuse only reveals frequency analysis?

* ldea: uniqueness of the message Itself should also serve as a “nonce”

Misuse-resistant AE

* Novelty: Repeating N has limited damage

 No impact to authenticity

* Privacy damaged only to the extent that an adversary can detect repetitions

* Drawback: Cannot make just one pass through P
* Every bit of C must depend on every bit of P

* So, cannot output first bit of C before reading last bit of P

e Corollary: can omit the nonce entirely If you want, Enc can be deterministic!

 Note how we’ve come full circle on this question

- P A
-

Deterministic Authenticated Encryption (DAE)

Provides key wrapping!

e Adversary cannot produce a valid
C without knowing K

e Even C corresponding to a

message P that depends on the
key K somehow

Foreshadowing: will need key
wrapping in full disk encryption

File System Key

o o a

File Metadata
Class Key File Contents

File Key

Hardware Key

Passcode Key

Synthetic Initialization Vector (SIV) [Rogaway, Shrimpton 2006]

N AP
e Novelty

e Leverages structure of P, A to | | | v|

.) Y VvV
ensure uniqueness of CTR's nonce

e Can be deterministic l ‘
e Applies to a wide range of MACs Y l
tag T ciphertext C

e Drawbacks
e 2 passes, 2 keys
e Must decrypt, then verify

 Cannot truncate tag

Combining GCM and SIV

GCM-SIV: Full Nonce Misuse-Resistant Authenticated| |Haswell 1.17 cycle/byte
Encryption at Under One Cycle per Byte*
Shay Gueron' Yehuda Lindellt Broadwell 0.92 CyCIG/ byte
AES-GCM-SIV: Specification and Analysis
Message Length AES-GCM-SIV| GCM-SIVT | AES-GCM JAES-GCM-SIV| GCM-SIV™ | AES-GCM
(bytes) 128-bit key | 128-bit key | 128-bit key 256-bit key | 256-bit key | 256-bit key
ENC / DEC |ENC / DEC|ENC / DEC|] ENC / DEC |ENC / DEC|ENC / DEC
16 cycles] 257 /358 | 129 /133 | 129 / 141 306 / 445 | 152 /194 | 154 / 201
64 cycles| 361 /456 | 261 /227 | 193 / 190 441 / 546 | 292 /305 | 219 / 215
1,024 C/Bl| 137/1.17 |125/094[084/079 | 1.69/1.48 |1.53/1.22| 1.1 /1.05
2,048 c/B| 1.14/088 |1.09/0.76 076 /071 | 1.43/1.16 | 1.36/1.03 | 1.00 / 0.97
4,096 C/B| 1.04/0.76 |1.01/0.71 068 /067]| 1.31/1.03 |1.26/0.96 | 0.93/0.92
8,192 C/B| 098 /069 |0.97/0.66|066/065]| 1.24/095 |1.22/0.92| 0.91/0.9
16,384 C/B| 096/066 |0.95/065|064/064] 1.21/092 | 1.20/0.9 | 0.89 / 0.89

Result: Protected messages, given a shared key

o key K key K

private & auth
message P

recover

P = Dec(K, C)
Or receive error

After spring break: How to generate and distribute keys

o key K @ key K

