Course Announcements

* HW 6 and 7 both due on Wednesday 3/25
* Homework 8 posted today, due Wednesday 4/1

* Reminder: If you want to ask a question during the virtual lecture, type
It in the chat window

Lecture 15: Authenticated Key Exchange

Google.com in Firefox:

Technical Details
Connection Encrypted (TLS ECDHE RSA WITH_AES 128 GCM SHA256, 128 bit keys, TLS 1.2)

1. Key exchange

2. Public key cryptography
BU login page in Firefox (2017):

Technical Details

3. P U b l.i C key d igita l Sign atu res Connection Encrypted (TLS_RSA_ WITH_AES_256_CBC_SHA, 256 bit keys, TLS 1.2)

4. Digital certificates & the PKI

Recall: end-to-end (e2e) data protection

* Alice and Bob want to have a
private digital conversation

* They would like to use AuthEnc

* Provides privacy + authenticity vs.
Mallory with full network control

* Provides partial sender deniability
even If Mallory coerces Bob

* Remaining issues

* Alice and Bob don’t yet have a
shared (symmetric) key

* Need forward + backward secrecy

Course roadmap

Protected Authenticated

Elegant
protocols

communication key agreement

Utilitarian ' ——

tools Block |
ciphers |

Modular
arithmetic

s Al L i e

functions

Random(ish)
permutations

1. Key Exchange

Generating the first shared secret

* Alice and Bob have

* Never met In person, or else they
could exchange a key face-to-face

* Lack any shared secrets, or else
they could run PBKDF2 on them

* They do have individual secrets!

* Question: can Alice and Bob
generate a symmetric key K and
keep it secret from Eve/Mallory?

Diffie-Hellman key agreement (vs passive Eve)

Protocol (given a public const g) Analysis
Choose a randomly Choose brandomly e Correctness: shared secret since
Compute A = g“° ComputeB=g

C Ab = (ga)b — gab — (gb)a = Ba

2

* Secrecy: to learn K, a passive Eve
given g, g%, g® must find gab

" pa v Y * There exist mathematical spaces
output k=5 Output K =A In which this problem is hard!

AuthEnc,(P) * Forward secrecy: Choices of a, b
are ephemeral; delete afterward

Delete a, K Delete b, K
SO even you cannot compute K

How to perform key exchange securely?

Modular arithmetic

\ emmw o W " . ommw o W
SN, Sl ke R

® Y
J) &
e, < S
P o F

e a constant to any power,

b/ R, 5
- ™ |
s 7

* Rais

"

e.g. X » 3*(mod 7)

1T 2 3 4 5 6
Bl: 2 6 ¢ 5 1

* Permutation, but hard* to invert

* = must take the group of quadratic residues (i.e., even half of the truth table)

Elliptic curves

1

' R
~

Elliptic curve: a cubic equation
y2=x3+ax +b(mod p)

Consider set of points on this curve

We can “multiply” points using the
rule P-Q-R =1

Technical Details

Connection Encrypted (TLS_ECDHE_RSA WITH_AES_128 GCM_SHA256, 128 bit keys, TLS 1.2)

Diffie-Hellman key agreement (vs active Mallory)

Active attacker causes problems! * Q: How do Alice and Bob verify
they're talking with each other?

° A: Use a MAC?

2. Public Key Cryptography

PUBLIC KEY KRUPTO

—) @ =)

00N () b)
e T .
L= | | ®® Esrd
rE @A sEEE @
m S

Sl é
kc@ 8 =i kc% v T

Public key encryption

* Operation
* Anybody can send ciphertexts
* Only Bob can decrypt + read
* Security guarantee: CPA or CCA

* Impact if Mallory learns Qw2
* Problem: Eve reads msgs from past

* Response: ??? (dangerous to use!)

* If necessary, use |IES or KEM

Public key digital signatures

* Operation

9)

* Only Alice can generate signatures

* Anybody can verify

* Security guarantee: EU-CMA

* Impact if Mallory learns @ww»? S
* Problem: Eve forges msgs in future

* Response: Alice can revokRe her key

3. Public Key Digital Signatures

Digital signatures provide public authentication

secret public

0 = Signsk(A)

check W'
Verifyp (A, 0) Property MAC Sign

Sender auth: Bob knows AlicesentA v V

Msg auth: Bob can detect tampering

cannot

v oV
P = | Receiver auth: Bob knows A for him v X
forge (A* o*) ; Partial deniability: Alice candenyA v X

How to make digital sighatures?

Modular arithmetic

* Similar math
as with key
exchange

: e 4
IA & v

“

* Two common methods

* (EC)DSA — NIST standard

* Schnorr signatures — simpler
but patented

RSA (Rivest, Shamir, Adleman)

* Relies (more or less) on the
hardness of factoring N = p g

* Less commonly used nowadays

Technical Details

Connection Encrypted (TLS_ECDHE_RSA WITH_AES_128 GCM_SHA256, 128 bit keys, TLS 1.2)

Technical Details

Connection Encrypted (TLS_ RSA WITH_AES 256 CBC SHA, 256 bit keys, TLS 1.2)

Combining symmetric encryption + public signatures

* In the symmetric case, we learned
that Enc-then-MAC Is best option

* Intuition: Never expose the decryption
key to an invalid message

* Does this technique work as well
with public key signatures?

i

Combining symmetric encryption + public signatures

In the symmetric case, we learned
that Enc-then-MAC Is best option

* Intuition: Never expose the decryption
key to an invalid message

Does this technique work as well
with public key signatures?

Answer: No!

* Issue: Mallory can receive ciphertexts
from Alice, claim them as her own!

Can lead to an oracle attack, as
occurs with Apple’s iIMessage

Let C = Sym EnCAm(P)
Send PublicSign,(C)

Pretend to be Alice,
send PublicSign,(C)

/

Will decrypt C using
symmetric key Kag!

Authenticated key exchange

Choose a randomly Choose b randomly
Compute A = g°
<

1. Alice and Bob sign their messages during Diffie-Hellman key exchange

Question: how do Alice and Bob

2. Alice and Bob verify signature of each other's messages —\ .. o.h other's public keys?

3. Use shared key A = Ba for (deniable) symmetric authenticated encryption

4. Digital Certificates & the
Public Key Infrastructure (PKI)

One option: ask a common friend to connect you

Authentication

* Suppose that auth Server (AS)
reques
. ﬁ
* Alice + Bob both trust server S i ==
C.D TGT

* Alice + Bob have shared symmetric Client| &P
pzz7y authenticator EF

keys K,¢, Kzs With the server 2z
Client_to_server ticket

Client/server

* Then, server can create key K,; o
and send 1t to them (E:'”Snt o corver ficket Server (SS)
autnhenticator

* Needham-Schoeder (1978)
-

time auth

* Kerberos (late 1980s)

* Mostly used within a single
enterprise, since server sees all

Public key infrastructure

* A certificate authority stores all
public keys (like a phone book)

* Server does not learn private keys
“I want Bob's

* Anyone can query the authority public key”

to learn someone else’s key

* CA signs responses so that
everybody knows they are legit

* Alice knows the CA’s public key
because It Is included In her OS

Alice

Bob

PKI improved

* Alice talks with Bob, not CA

* Bob adds the CA’s attestation
that signing key belongs to him

* (Shown: simplified version of the
TLS handshake)

éd

HI,

5 .
T i\
ey TR p
4 \ EESSS S
\ R - \ i
| ; %\

Name Unique key

What if Bob'’s secret key S is compromised?

compromise recovery

safe? < pwned > safe?

time

Forward (pre-compromise) secrecy | |Backward (post-recovery) secrecy
Yes! Unless Mallory has a time No. If Mallory has Bob's secret key,
machine, signatures Alice verified she can sign messages and Alice
before a breach must be valid. will believe they are from Bob.

Backward security technique #1: Cert expiration

“Hi, who are you?” + nonce

* Alice should only trust Bob’s key
for a limited time

* The CA’s attestation includes

this time range valid from 1/1/20
until 12/31/20)

* Afterward, Bob must register a
new public key

Name Unique key

Backward security technique #2: Key revocation

* CA binds public key to a name

* If you lose control of your public
key, you should tell the CA to
break this binding

* Every CA maintains a certificate
revocation list that anyone can

query

“No, It Is
still valid”

“Has Bob's key
been revoked?

Name Unique key

Alice
Bob

Backward security technique #2: Key revocation

* CA binds public key to a name

* If you lose control of your public
key, you should tell the CA to
break this binding

“Has Bob's key
been revoked?

Signske(“Lost key”)

* Every CA maintains a certificate “Yes, do
revocation list that anyone can not use it”

query

Name Unique key

