Course Announcements

* Homework 8 has been posted, due Wednesday 4/1
* Lecture + recitation section videos posted on Piazza under “Resources”

* Reminder: If you want to ask a question during the virtual lecture, type
It in the chat window



Lecture 16: Signal’s key ratcheting

1. Digital certificates & the PKI Used in a messaging system near you!
2. Key evolution © signal
3. Signal's double ratchet (9 WhatsApp

e Facebook Messenger

4. Analyzing the Signal protocol

) Skype



Recall: end-to-end (e2e) data protection

* Alice and Bob want to have a
private digital conversation

* They would like to use AuthEnc

* Provides privacy + authenticity vs.
Mallory with full network control

* Provides partial sender deniability
even If Mallory coerces Bob

* Remaining issues

* Alice and Bob don’t yet have a
shared (symmetric) key

* Need forward + backward secrecy




Recall: Authenticated key agreement for e2e protection

Choose a randomly Choose b randomly
Compute A = g°
<

1. Alice and Bob sign their messages during Diffie-Hellman key agreement

Question: how do Alice and Bob

2. Alice and Bob verify signature of each other's messages —\ .. o.h other's public keys?

3. Use shared key A = Ba for (deniable) symmetric authenticated encryption

\ Question: how can we get
forward + backward secrecy?




1. Digital Certificates & the
Public Key Infrastructure (PKI)



One option: ask a common friend to connect you

Authentication

* Suppose that auth Server (AS)
reques
. ﬁ
* Alice + Bob both trust server S i ==
C.D TGT

* Alice + Bob have shared symmetric Client| &P
pzz7y authenticator EF

keys K,¢, Kzs With the server 2z
Client_to_server ticket

Client/server

* Then, server can create key K,; o
and send 1t to them (E:'”Snt o corver ficket Server (SS)
autnhenticator

* Needham-Schoeder (1978)
-

time auth

* Kerberos (late 1980s)

* Mostly used within a single
enterprise, since server sees all



Public key infrastructure

* A certificate authority stores all
public keys (like a phone book)

* Server does not learn private keys
“I want Bob's

* Anyone can query the authority public key”

to learn someone else’s key

. . Signskei(aaeefD)

* CA signs response certificates so |
they can be verified as legit

* Alice knows the CA’s public key
because It Is included In her OS

Alice

Bob




PKI improved

* Alice talks with Bob, not CA

* Bob includes a certificate that
the signing key belongs to him

* (Shown: simplified version of the
TLS handshake)

éd

HI,

5 .
T i\
ey TR p
4 \ EESSS S
\ R - \ i
| ; %\

Name Unique key




What if Bob's secret signing key is compromised?

compromise recovery

safe? < pwned > safe?

time

Forward (pre-compromise) secrecy | |Backward (post-recovery) secrecy
Yes! Unless Mallory has a time No. If Mallory has Bob's secret key,
machine, signatures Alice verified she can sign messages and Alice
before a breach must be valid. will believe they are from Bob.




Backward security technique #1: Cert expiration

_ “Hi, who are you?" + nonce

* Certificate states that Alice

should only trusts Bob's key for
a limited time

° Afterward, Bob must register d valid from 1/1/2()
new public key with the CA until 12/31/20)

* (Cert expiration also helps to
deal with Moore’s law: keys
become bigger over time)

Name Unique key




Backward security technique #2: Key revocation

* CA binds public key to a name

* If you lose control of your public
key, you should tell the CA to
break this binding

* Every CA maintains a certificate
revocation list that anyone can

query

“No, It Is
still valid”

“Has Bob's key
been revoked?

Name Unique key

Alice
Bob




Backward security technique #2: Key revocation

* CA binds public key to a name

* If you lose control of your public
key, you should tell the CA to
break this binding

“Has Bob's key
been revoked?

Signske(“Lost key”)

* Every CA maintains a certificate “Yes, do
revocation list that anyone can not use it”

query

Name Unique key




2. Key Evolution



Symmetric key evolution

Question: Once Alice and Bob negotiate a shared symmetric key Kag for
authenticated encryption, must they re-execute another (expensive) key
negotiation protocol each time they want to update the key?

Basically, seek Authenticated Encryption with a key update mechanism
* KeyGen: randomly choose key K of length A, e.g. uniform in {0,1}
* AuthEnck(private P, authenticated A, nonce N) - ciphertext C

e AuthDeck(C, A, N) > P or “error”

* KeyUpdate(K) = K’ where Alice + Bob agree to use K’ from now onward, and
cannot compute K from K’



Symmetric key evolution via hash functions

ldea: Once we have a single shared key K,z expand using a chain of hash functions

Kag > H(Kag) > H(H(Kag)) > H(H(H(Kag))) = ...

2 | AuthEnci(P,) Y

Algorithm:

* Alice + Bob agree on key K,z to use for auth enc
AuthEn CH(K)(PZ)

* After some time has passed, they can
evolve their key by updating K < H(K)

* Here, “time” can denote actual wall-clock time or a message counter
* Alice + Bob must stay in sync, or else the chain breaks & they must redo key agreement

* Crucially, they ensure that old values of K are deleted from their system! Evolution relies on
the fact that Mallory cannot steal something that isn't around to be stolen



Public key evolution

2 rounds of Diffie-Hellman create a shared secret, and 1 round can update it!

B1 = gb | Choose b1 « [q]

—

Al = g*!

—

Choose a1 ¢ [q]

Choose a2 « [q] A2 = g¥

Shared secret g2 b2



3. Signal’s Double Ratchet



Double ratchet rules

Alice and Bob maintain two sets of keys: one for Alice-to-Bob messages,
and another for Bob-to-Alice messages

1.

When a message Is sent or received, a symmetric ratchet KDF step Is
applied to the sending or receiving chain to derive a new message key

When alternating the direction of communication, a public ratchet
step updates the chain keys that are used In the symmetric ratchet



Signal messaging protocol (simplified)

1. Key evolution

* Each key encrypts 1 msg, then evolved + deleted

* Keys are forward secure but not backward secure

(Message keyD

}
|

(Message keyz>
'

KDF

(Message I<ey3>

}




Signal messaging protocol (simplified)

. Chain keys
1. Key evolution I

* Each key encrypts 1 msg, then evolved + deleted (DF —»(Message keyD

* Keys are forward secure but not backward secure

'
2. Key derivation Chain key:

!

KDF —><Message I<eyz>

* Message keys now forward + backward secure

* “Message keys aren't used to derive other keys...
useful for handling lost/out-of-order messages”

}
Chain keys

}

KDF —»(Message key3>

!



Signal messaging protocol (simplified)

. Chain keys
1. Key evolution I

Each key encrypts 1 msg, then evolved + deleted <shared secret>-> KDE _.Qv\essage |<ey1>

* Keys are forward secure but not backward secure

|

2. Key derivation Chairl key:

* Message keys now forward + backward secure

KDF —><Message I<eyz>

* “Message keys aren't used to derive other keys...
useful for handling lost/out-of-order messages”

}
Chain keys

}

3. Key ratcheting

* Periodically build new D-H shared secrets

<Shared secret)—» KDF —»(Message key3>

* |f adv doesn’t know shared secret, then recover
from losing chain key (backward secrecy) l



Public ratchet seeds symmetric ratchets (one per direction)

How do we start
this process?
How does Alice
learn Bob's first
D-H message If
Bob is offline?

Alice Bob

Source: https://whispersystems.org/docs/specifications/doubleratchet/



4. Analyzing the Signal Protocol



Putting everything together

Deniable Choose a « [q] Choose b < lal  Fyyd/back secure

Compute A = g2 Compute B = gP
Ephemeral _ Evolve
secret Output Ba Output AD public key

K = KDF(B2) K = KDF(AP)

- ‘ AUthEnCK(P1)

AuthEnc is == - Evolve
deniable sof | AuthEnc(P,) | " & symm key




compromise

recovery

Why Signal provides forward and backward secrecy

time

pwned

safe? <

> safe?

Forward (pre-compromise) secrecy
“The parties derive new keys for
every Double Ratchet message so
that earlier keys cannot be
calculated from later ones.”

Backward (post-recovery) secrecy

“The parties also send Diffie-
Hellman public values attached to
their messages. The results of
Diffle-Hellman calculations are
mixed into the derived keys so that
later keys cannot be calculated

from earlier ones.”

Quotes from https://signal.org/docs/specifications/doubleratchet/




Ephemeral utopia

No long-term keys = great forward secrecy
* Message key used to AuthEnc a message Is used once and tossed

* Chain key used to construct msg key iIs refreshed in each public ratchet

w4 @ 750

* Diffie-Hellman key pairs chosen ephemerally In each public ratchet PR REEEE

Wait... actually, Is this a utopia or a dystopia?

* If you don’t have any long-term state, then who are you?! SR

47272 72741 60915 64451

. . Al h l I S . l . . P I(I If you wish to verify the security of your
¢ ReSO lUtI O n. SO ave a O ng_te rm <ey’ Igna mal ntal nS a end-to-end encryption with Vera Zasulich,
compare the numbers above with the
numbers on their device. Alternately, you
can scan the code on their phone, or
ask them to scan your code. Learn more

Source: https://whispersystems.org/blog/safety-number-updates/ “




Solution: a more involved Triple-DH protocol

Party-A I> communicating with >

LDH-A | EDH-A - | LDH-B

.......................

0 F e

Shared_Secret = KDF( | sS4kt | ,| sH2 |,

LDH - Long4erm DM keypair,

EDH - Ephemeral DM keypair,

S « Secret key in DM keypair

P - Pubic key in DH keypair,

b - Socret key Is destroyediforgotien after use.
SHK -~ Shared key from DH exchange.

} communicating with >

 EDH-B

Party-A

LDH-B

Ak

 © Stan Drapkin



SECURE MESSAGING APPS COMPARISON

BECAUSE PRIVACY MATTERS

App name Allo iMessage Messenger Signal Skype Telegram Threema Viber Whatsapp Wickr Wire

TL:DR: Does the
app secure my
messages and
attachments?

Source: https://www.securemessagingapps.com

Thinking About What You Need In A Secure
Messenger

BY GENNIE GEBHART | MARCH 28, 2018

Source: https://www.eff.org/deeplinks/2018/03/
thinking-about-what-you-need-secure-messenger




Next week:
protecting data in use




Course roadmap

| Signal L | Key |
messaging |’ evolution |

Protected Authenticated
Elegant communication | key agreement
protocols _. [N
Utilitarian | .

Block Hash Modular
tools ciphers | functions | arithmetic

erenernsenzesasn? R .

N 7

Random(ish)
permutations




