Course Announcements

- Assignments
 - Homework 9 is due 4/8, no HW for the following 2 weeks
 - Class project has been posted (see Piazza post 302), due Wednesday 4/22
 - Reading: Secure Multiparty Computation for Privacy-Preserving Data Mining
- Notes
 - This course is moving to fall-only starting this fall, tell your friends!

Lecture 18: Protecting Data in Use against Mallory

- 1. MPC against Eve
- 2. MPC for Boolean circuits
- 3. MPC with preprocessing
- 4. MPC against Mallory

Objective of secure multi-party computation (MPC)

- Given multiple parties P_1 , P_2 , ..., P_n each with private data x_1 , x_2 , ..., x_n
- Parties engage in computing a publicly-known function f

$$y = f(x_1, x_2, x_3, ...)$$

- Assume that at most t of the n parties are adversarial
 - They might collectively be acting as a passive Eve or an active Mallory
- Then, nothing is revealed about the inputs beyond what can be inferred from the output y (note: this inference problem can be challenging)
- Special case: zero knowledge proofs in which prover P(x, w) wants to convince verifier V(x) that $x \in L$ without revealing w

1. MPC against Eve

Review: secure addition [s + t] = [s] + [t]

Compute over secret shares

Reconstruct the final answer

Review: secure multiplication?

 $y_1 = ???$ = W * X

Compute over secret shares

Reconstruct the final answer

Review: secure multiplication with help

Split secrets ... and random a, b, c with a * b = c

$$[d] = [w] - [a]$$

 $[e] = [x] - [b]$

open d, e

$$[y] = de + d[b] + e[a] + [c]$$

Compute over secret shares

Add a third party P₃ to generate hints

$$[d] = [w] - [a]$$

 $[e] = [x] - [b]$

open d, e

$$[y] = de + d[b] + e[a] + [c]$$

Putting it all together

start: *s*₁, *t*₁, *x*₁

$$W_1 = S_1 + t_1$$

$$d_1 = w_1 - a_1$$

 $e_1 = x_1 - b_1$

$$y_1 = de + db_1 + ea_1 + c_1$$

start: *s*₂, *t*₂, *x*₂

$$W_2 = S_2 + t_2$$

P₃

start: nothing

pick a, b, c=ab split a, b, c

$$y_2 = db_2 + ea_2 + c_2$$

Security against Eve

- Claim: if all three servers follow the protocol, no server learns any data
 - P_1 and P_2 each hold 1 share of each secret, the other serves as a one-time pad
 - P₃ never receives any information in the entire protocol
- However, protocol is unsafe if one server is an active Mallory
 - Bad: If Mallory = P_1 , she can tamper with the output. Calculating a bad share $y_1' = y_1 + 1$ causes a corresponding change to the hidden value y' = y + 1
 - Worse: Some protocols that are only secure against Eve might permit Mallory to learn secrets as well (see this week's reading assignment)

Recall: Secure computation of everything

- + and * form a Turing-complete set of gates
- Ergo, we can compose them to do secure computation of any function f
- (This may not be the fastest way to compute f securely, however...)

2. MPC for Boolean circuits

Yao's millionaires problem

- Alice and Bob know their own salaries (s and t, respectively)
- They want to know if $s \ge t$
- You can convert ≥ into an arithmetic circuit... but it's large
- Much easier to compute ≥ on the bit representation of s and t

Secure Boolean XOR: a new way to split secrets!

Secure Boolean AND... with help from P₃

Split secrets ... and random a, b, c with $a \wedge b = c$

$$[d] = [w] \oplus [a]$$
$$[e] = [x] \oplus [b]$$

open d, e

$$[y] = de \oplus d[b] \oplus e[a] \oplus [c]$$

Compute over secret shares

Combined MPC for a Boolean circuit

start: *s*₁, *t*₁, *x*₁

$$W_1 = S_1 \oplus t_1$$

$$d_1 = W_1 \bigoplus a_1$$

$$e_1 = X_1 \bigoplus b_1$$

$$y_1 = de \bigoplus db_1$$

$$\bigoplus ea_1 \bigoplus c_1$$

start: s_2 , t_2 , x_2

$$W_2 = S_2 \oplus t_2$$

$$d_1 = w_1 \oplus a_1$$
 $d_2 = w_2 \oplus a_2$
 $e_1 = x_1 \oplus b_1 \longleftrightarrow e_2 = x_2 \oplus b_2$

start: nothing

$$y_2 = db_2 \oplus ea_2 \oplus c_2$$

Converting between arithmetic and boolean

Problem

- Compute parties have an additive sharing [x] of secret $x = x_1 \oplus x_2$
- Want a Boolean sharing $x = x'_1 \oplus x'_2$

Solution

- P_1 imagines that x_1 is a fresh secret, makes Boolean splitting $x_1 = x_{12} \oplus x_{12}$
- P_2 does the same: $X_2 = X_{22} \oplus X_{22}$
- Securely compute the Boolean circuit that does ripple-carry addition of x_i
- Result: Boolean sharing of the sum x

Source: https://en.wikipedia.org/wiki/Adder_(electronics)

Solving Yao's millionaires problem

- If salaries are one bit long: answer = s
- Given 2-bit salaries $s=s^2s^1$: answer = $(s^2 \oplus t^2) \land s^2$ $\oplus (s^2 \oplus t^2 \oplus 1) \land s^1$
- Given 3-bit salaries: same idea...
- Important: cannot 'short circuit' a secure computation

3. MPC with preprocessing

Observe: "hints" from P₃ are data-independent

$$[d] = [w] - [a]$$

 $[e] = [x] - [b]$

open d, e

$$[y] = de + d[b] + e[a] + [c]$$

Pre-processing

- New plan: we will consider two values for every wire s: the secret value v_s and an independent, random r_s
- P_3 can pre-compute the entire circuit on the r_w
 - Sample r_s , r_t , r_x uniformly at random
 - Compute $r_w = r_s + r_t$
 - Compute $r_v = r_w * r_x$ (note: mult has one extra detail...)
- P_3 gives P_1 and P_2 one share [r] of each random value

Compute on masked data

- Data holders use random r as a one-time pad, P_1 and P_2 are given "masked" wire values $m_s = v_s + r_s$
- P₁ and P₂ compute all masks in the clear (no shares!)
- Addition of masks gives addition of real values: set $m_w riangleq m_s + m_t$, then $v_w = (m_s r_s) + (m_t r_t) = v_s + v_t$
- Multiplication of masks follows our algebra trick: set $[m_y] \triangleq m_w m_x m_w [r_x] m_w [r_x] + r_y$ and open m_y
- Invariant: none of the compute parties learn any v_s
- Reveal y to the output party by providing v_v and r_v

4. MPC against Mallory

Add a fourth party P₄ for redundancy

Add a fourth party P₄ for redundancy

Secure against Mallory?

Secure against Mallory!

5. Final thoughts

Benefit of cryptographically secure computation

- MPC says nothing about which data analyses are worthwhile to compute
- MPC de-couples discussion of what to compute from how to do so
- MPC expands the Pareto frontier of possible data analyses

Special case: zero-knowledge proofs

- Consider two parties: a prover P and a verifier V
- There is a public statement x that is claimed to be in an NP language L, and the prover knows a witness w such that R(x, w) = True
- P wants to convince V that $x \in L$, but without revealing w
- Prover and verifier can execute a 2-party secure computation of R

Zero knowledge via "MPC in the head"

- P wants to convince V that x ∈ L, but without revealing w
- Prover securely computes R(x,w)
 - Prover acts as all compute parties
- Let the verifier choose t parties and receive their complete state
 - Privacy: observing the view of t parties gives V no information
 - Accuracy: if P deviates from the protocol, Pr[V catches] = t/n

Next week: securely computing specific functions