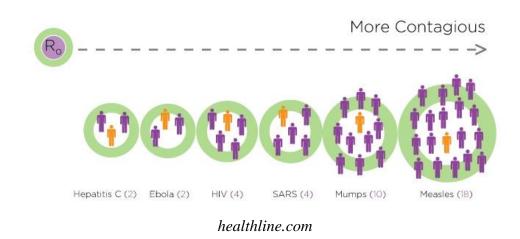
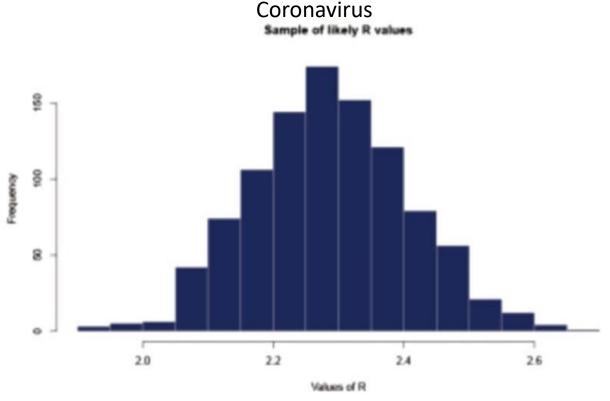
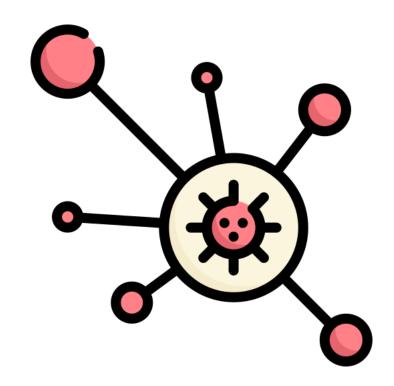

Anonymous Collocation Discovery: Harnessing Privacy to Tame the Coronavirus


Ran Canetti, Ari Trachtenberg, Mayank Varia

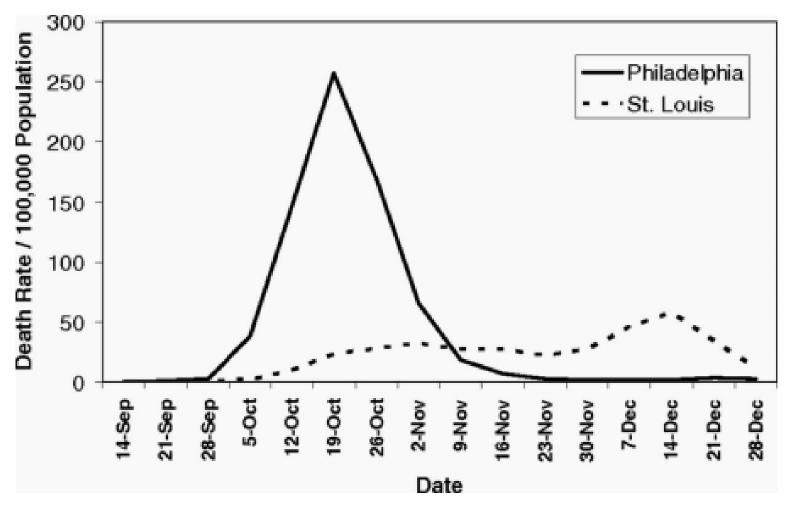

https://arxiv.org/abs/2003.13670

The problem: Ro

= # of people who will catch the disease from one contagious person



Sheng Zhang, et al. Estimation of the reproductive number of novel coronavirus (covid-19) and the probable outbreak size on the diamond princess cruise ship: A data-driven analysis. International Journal of Infectious Diseases, 2020.


Mitigation

• Spread continues until:

- Starvation
 - too hard to find victims
 - coupon-collector problem
 - herd immunity
 - ~50% of the population for R_0 ~ 2
- Vaccination
 - 12-18 months away

Control - 1918 Pandemic

1918 1919

https://www.cdc.gov/flu/pandemic-resources/1918commemoration/three-waves.htm

https://qz.com/1816060/a-chart-of-the-1918-spanish-flu-shows-why-social-distancing-works/

Minimizing infections:

General Quarantine

- Easier to implement
- Requires complete coopeartion
- Affects economy, psychology
- Eventually loses effect

Targeted Quarantine

- Extensive testing
- Timely alert and isolation of infections
- COVID:
 - People are contagious while asymptomatic

College students relax and have fun during their Spring Break. (AP Photo/Alan Diaz)

System goals:

Open participation

- Voluntary
- Enter and leave at will

Simplicity

- Easy to understand
 - may affect adoption!
- Easy to implement
- Easy to verify

Decentralization

- No central personal information
- Cannot aggregate databases

Low infrastructure

Deployment must be fast

Existing systems:

China, Taiwan, and South Korea:

- Central aggregation of cellphone data
- No public details

Singapore

- Bluetooth contacts + GPS location history
- Privacy from other users
- No privacy from government

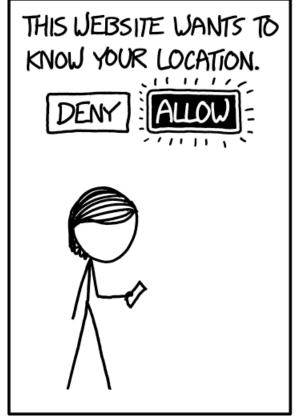
Israel

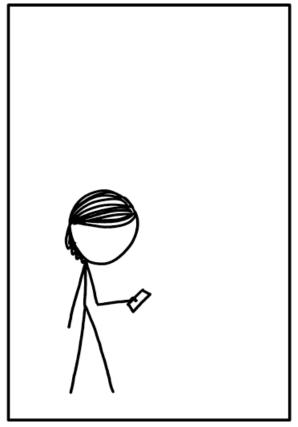
- Privacy until infected
- Full location history of infected party is shared

Covid-watch, MIT

• Simialr to this scheme

Lindell and Green


• Brighttalk on scientific and political challenges



Location history – why do we care?

https://xkcd.com/1473/

Location Leakage ... Why should we care?

Work times

Friends

Medical issues

Political/religious interests

• What you buy / consider

COVID status ... Why should we care?

• Social shaming

• Employment risk

Insurance

Social score

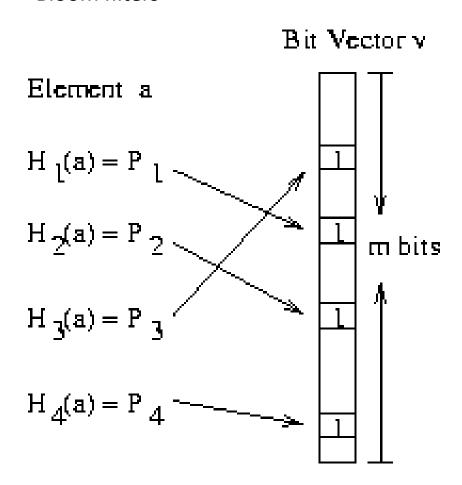
High level idea:

Joe user

- Broadcasts random tokens.
 - Short-range Bluetooth
 - Approximates infection risk distance
 - Rotated at regular intervals
- Listens for other broadcasts.
 - Checks received tokens against infected registry

Potentially sick user

- Gets tested.
- If positive, uploads broadcasts to central registry



Parameters:

- Time epoch (a tick)
 - Long enough to be reproduced reliably
 - Short enough to produce privacy
- Retention time
 - How long data is retained (14 days?)
- Update interval
 - How often to contact the registry

Implementation using Bloom filters

• Bloom filters

Probability of False Positive:

$$\left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \approx \left(1 - e^{kn/m}\right)^k.$$

Fixed false positive -> m grows linearly with n

Implementation using Bloom filters

- Tokens
 - Produced each tick with probability p_{new}
 - Capped at g
- Registry
 - Big Bloom filter in the sky
 - Download and check if heard token is there
 - Can add through bit-wise OR
 - Plausible deniability
- Medical professional
 - User produces witness to infection
 - Uploads Bloom filter of infected to registry
 - Fake tokens won't match what people hear

Implementation using Bloom filters – Sample Numbers

- Bloom filter
 - $m=8 \times 10^8$
 - ~100MB / day download
 - No compression
 - No incremental updates
 - False Positive rate 10⁻¹⁵
 - n<=11,000,000
- Town
 - 10,000 residents
 - ~1100 tokens / resident
 - 14 day history
 - 28,800 ticks @ 1 tick/minute

- 28800 / (1/ p_{new}) <= 1100
- $p_{\text{new}} \le 3.5\%$
- recreate token every ~26 minutes

Analysis - Privacy

- User
 - Obtains tokens from (i) others, (ii) registry
 - Location information limited to epoch
 - Different epochs cannot be linked
- Registry
 - Cannot connect tokens, if updates batched
- Doctor
 - Can cause lots of damage
- World
 - Spoofing fake tokens
 - Rebroadcast others' tokens

Philosophical problems

- Share your tokens
 - Bounded number of tokens
- Share heard tokens
 - Possible linkage (who else heard tokens)
- Shared encounter token
 - Complexity of interaction
- Reidentification
 - Few contacts
 - Cameras

Technical problems

- Bluetooth
 - Not all devices transmit at same power
 - Needs to be constantly receiving
 - problem on iOS
 - battery drain
- Token sharing
 - broadcast tokens are received tokens?
- Linkage
 - I know when I receive infected tokens
 - Reidentify sick person?

Extensions

- Bluetooth
 - Reduce power
 - Filter signal strength
 - RSSI
 - Packet loss
- Per-encounter tokens
 - A receives T_B from B
 - B receives T_A from A
 - Both compute $H(T_A, T_B)$
- Mediate server access
 - Requires trusted server
 - Allows monitoring access patterns
 - Use Private Set Intersection
 - Register tokens with callback

Extensions II

- Verify physical proximity
 - Multi-message handshake
 - Include coarselocation information in token
- Token
 - A receives T_B from B
 - B receives T_A from A
 - Both compute $H(T_A,T_B)$
- Staggered collocation
 - Devices in fixed locations
- Planned obsolescence
 - Data useless after infection window

Conclusion

- Adoption
 - Most important hurdle
 - Induce through fast-track testing
 - Induce through paying for positive conneciton
- Maintaining authenticity
 - Fake apps
 - Rogue apps
 - Patching apps
- Preventing abuse
 - Fake IDs

Acknowledgments

- Mayank Varia, co-author
- Ran Canetti, co-author
- Andy Sellars
- Gerald Denis
- Anand Devaiah
- Amir Herzberg
- David Starobinski
- Charles Write
- Ramesh Raskar
- Ron Rivest

Icons made by Freepik from www.flaticon.com