Course Announcements

* Project
* Project due Wednesday 4/22

* Send a private Piazza post to the TA/grader overseeing your project

* Notes
* Reading: End-to-End Verifiability

* Remaining lectures: hash functions + cryptanalysis next week, then guest
lectures on cryptography and the law for the final week

Lecture 22: Random Number Generation

1. Defining ‘good’ randomness

2. Constructing RNGs: harvest, extract, expand

\ » -

- - : ‘\

AN
A Y

1. Defining ‘dood’ randomness

Effects of bad randomness

o f RUSSIANS ENGINEER A A forensic examination found that the generator had code that was installed after the machine
I_Otte ry ra U d EIIHEIZ\LFWIV\TN%LCOI\TSI%%H&E\]%E NO had been audited by a security firm that directed the generator not to produce random numbers
FIX on three particular days of the year if two other conditions were met. Numbers on those days

would be drawn by an algorithm that Tipton could predict, lowa Division of Criminal Investigation
agent Don Smith wrote in an affidavit.

All six prizes linked to Tipton were drawn on either Nov. 23 or Dec. 29 between 2005 and 2011.

Investigators were able to recreate the draws and produce "the very same ‘'winning numbers’
from the program that was supposed to produce random numbers,” Smith wrote.

* Weak TLS keys on Debian
computers in 2006-2008 int get RandomNumber ()

t
return 4° // chosen by foir dice roll.
* Weak RSA keyS // quaranteed to be random.

¢ ...and more Source: xkcd.com /221

Bad randomness in Debian

Bug forum discussion, 2003

I'm using Valgrind to debug a program that
uses the OpenSSL libraries, and got
warnings about uninitialized data in the
function RSA_padding_add_PKCS1_type_2(),
on the line with "} while (*p =="'\0");" (line
171 in version 0.9.7a). The following patch
ensures that the data is always modified,
something that the bytes() method
obviously fails to do.

--- rand_lib.c Thu Jan 30 2003

+++ rand_lib.c Wed Feb 26 2003

@@ -154,6 +154,7 @@
int RAND_bytes(unsigned char *buf, int num)

{

[new code here]

Debian security advisory, 2008

Luciano Bello discovered that the random
number generator In Debian's openssl
package is predictable. This I1s caused by an
Incorrect Debian-specific change to the
openssl package. As a result, cryptographic
key material may be guessable. ...

It Is strongly recommended that all
cryptographic key material which has been
generated by OpenSSL versions starting
with 0.9.8c-1 on Debian systems Is
recreated from scratch. Furthermore, all
DSA keys ever used on affected Debian
systems for signing or authentication
purposes should be considered
compromised.

Bad randomness in RSA key generation

Ron was wrong, Whit is right

Arjen K. Lenstra', James P. Hughes?,
Maxime Augier', Joppe W. Bos!, Thorsten Kleinjung', and Christophe Wachter!

I EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland
2 Self, Palo Alto, CA, USA

Abstract. We performed a sanity check of public keys collected on the web. Our main goal was
to test the validity of the assumption that different random choices are made each time keys are
generated. We found that the vast majority of public keys work as intended. A more disconcerting
finding is that two out of every one thousand RSA moduli that we collected offer no security.
Our conclusion is that the validity of the assumption is questionable and that generating keys
in the real world for “multiple-secrets” cryptosystems such as RSA is significantly riskier than
for “single-secret” ones such as ElGamal or (EC)DSA which are based on Diffie-Hellman.

Keywords: Sanity check, RSA, 99.8% security, ElGamal, DSA, ECDSA, (batch) factoring,
discrete logarithm, Fuclidean algorithm, seeding random number generators, Ky.

How you obtain randomness: /dev/urandom

Computer:~ Mayank$ cat /dev/urandom | head -c¢ 96 | xxd

00000000: |687d 6207 a2é6b fefe6
00000010: |7445 1lcdé 05ff £917
00000020: |a439 48bd 246e 76dl
00000030: |a075 7722 dcab dfcO
00000040: |cc3b £811 4pfl £9b0

00000050: |7d26 c6cs le3c Qc4d

How a computer generates randomness

Statistical tests to see
If entropy Is
“sufficient”

4 /\ N
Step 1: Harvest

Reliably produce a “pool”
of bits with true entropy

o /

Step 2: Extract

Produce ~128 nearly
uniform bits from the pool

o /

-

o

Step 3: Expand
Create a large sequence
of pseudorandom bits

~

/

Security requirements of randomness generation

1. Performance: Be fast enough that people will use It

2. Hard fail: Only expand once the system has been
adequately seeded with true entropy

3. Resilience: Adversary can’t predict outputs, even Use multiple sources of
If she can partially influence the source of true E{> entropy, and combine
randomness them in a smart way

4. Forward + backward secrecy: Adversary cannot Re-seed the PRNG

predict past or future PRNG outputs even if she I::> periodically with new
knows the current seed and state truly random numbers

2. Constructing RNGs:
Harvest, Extract, Expand

4 N

Step 1: Harvest
Reliably produce a “pool”
of bits with true entropy

. /

Step 2: Extract

Produce ~128 nearly
uniform bits from the pool

. /

-

o

Step 3: Expand
Create a large sequence
of pseudorandom bits

~

/

“Fortunately, 1t's not hard to harvest truly unpredictable
randomness by tapping the chaotic universe that surrounds
a computer's orderly, deterministic world of 1s and 0s.”

— |[EEE Spectrum

Step 1: Sources of entropy to harvest

* Physics: EM radiation, temperature (random.org/history)

http://random.org/history

Step 1: Sources of entropy to harvest

* Physics: EM radiation, temperature (random.org/history)

* Logical gates: Clock drift, thermal noise

Q

Apple’s Secure Enclave

Apart from the UID and GID, all other cryptographic keys are created by the system’s
random number generator (RNG) using an algorithm based on CTR_DRBG. System
entropy is generated from timing variations during boot, and additionally from
interrupt timing once the device has booted. Keys generated inside the Secure Enclave

use its true hardware random number generator based on multiple ring oscillators post
processed with CTR_DRBG.

http://random.org/history

Step 1: Sources of entropy to harvest

* Physics: EM radiation, temperature (random.org/history)

* Logical gates: Clock drift, thermal noise

* Quantumness: beam splitters & polarization, tunneling, entanglement

http://random.org/history

Step 1: Sources of entropy to harvest

* Physics: EM radiation, temperature (random.org/history)

* Logical gates: Clock drift, thermal noise
* Quantumness: beam splitters & polarization, tunneling, entanglement
* Human: keystroke timings, mouse movements, hard drive seek times

* Sensors: microphone, camera, gyroscope, Bluetooth/GPS/wifi signal

http://random.org/history

Step 3: Pseudorandom expansion

Statistical tests to see
If entropy Is
“sufficient”

4 /\ N
Step 1: Harvest

Reliably produce a “pool”
of bits with true entropy

. /

Step 2: Extract

Produce ~128 nearly
uniform bits from the pool

. /

-

o

Step 3: Expand
Create a large sequence
of pseudorandom bits

~

/

Step 3: NIST standards for DRBGs

* Use counter mode as a stream cipher (CTR_DBRG)

Synthetic, one

time use key K’

Source: NIST Special Publication 800-90A

Recommendation for Random Number Generation
Using Deterministic Random Bit Generators

B — — — — —

Step 3: NIST standards for DRBGs

* Use counter mode as a stream cipher (CTR_DRBG)

* A MAC is pseudorandom (HMAC_DRBG) = —
| V || 0x00 ||1lmv1ded data

V -

I provided data = Null

Source: NIST Special Publication 800-90A

Recommendation for Random Number Generation
Using Deterministic Random Bit Generators

Step 3: NIST standards for DRBGs

* Use counter mode as a stream cipher (CTR_DRBG)

* A MAC is pseudorandom (HMAC_DRBG)

* Use a hash function (Hash DRBG)

Source: NIST Special Publication 800-90A

Recommendation for Random Number Generation
Using Deterministic Random Bit Generators

(From 1) :

Function

dditional resee d
np counter
“ - ” additional
0x02 input
N
Function
v
> ctr
If additional
input # Nul j*_
I—+
Function
0x03 ||V
---------------------------------- "
« emoughbits L , Counter ! ee
counter

Step 2: Extraction of uniform-looking bits

Statistical tests to see
If entropy Is
“sufficient”

4 /\ N
Step 1: Harvest

Reliably produce a “pool”
of bits with true entropy

. /

Step 2: Extract

Produce ~128 nearly
uniform bits from the pool

. /

-

o

Step 3: Expand
Create a large sequence
of pseudorandom bits

~

/

Hashing as an extractor?

Let’s try to use a hash function H as an extractor (spoiler: it won't work)

Extractors operate on the principle that including more entropy sources can't hurt:
H(x,y,z) is at least as good a random number as H(x,y), no matter how awful z is

Issue: the entity that chooses z can strongly influence the resulting “random” number

1. Generate a random z
2. Try computing H(x,y,z)
3. If H(x,y,z) doesn't start with bits 0000, go back to step 1

4. Else, output this value of z

Result: H(x,y,z) begins with four known bits of 0000, even if x and y were perfectly
random

Also, this attack is fast: it only takes 16 computations of H on average

Extraction is hard (especially with forward secrecy)

Statistical tests to see
If entropy Is
“sufficient”

4 /\ N
Step 1: Harvest

Reliably produce a “pool”
of bits with true entropy

. /

Step 2: Extract

Produce ~128 nearly
uniform bits from the pool

. /

-

o

Step 3: Expand
Create a large sequence
of pseudorandom bits

~

/

