Course Announcements

- Assignments
 - Project due Wednesday 4/22
 - Homework 10 will be posted tomorrow, due Wednesday 4/29
 - Reading: The Block Cipher Companion, Section 6.1
- Final exam
 - Take-home exam with 48 hours to complete, structured to take ~2 hours
 - Assigned May 5 at 12am, due May 6 at 11:59pm (using US eastern time)
 - You may use your own notes, the lecture slides, and the textbook readings
 - No collaboration is allowed, and the academic conduct code will be enforced!

Lecture 23: Differential cryptanalysis

- 1. Exploiting linearity
- 2. One-round cryptanalysis
- 3. Adding more rounds

1. Exploiting linearity

Cryptology

Cryptanalysis

Physics of implementation

Math of algorithm

Refresher: block ciphers

Design goals

- Simple
- Makes no sense
- Simple to see why it makes no sense

Formal goal: pseudorandomness

- B_K looks like truly random function, aka Mallory cannot tell them apart
- Sanity check: linear functions are definitely not pseudorandom

Refresher: Claude Shannon's 2 goals for block ciphers

Confusion

- Uncertain K -> can't correlate X, Y
- Ideal: Prob[correlation] so small that attacker prefers a brute force attack

Diffusion

- 1 bit $\Delta X \rightarrow huge \Delta Y$
- Ideal: each output bit depends on all input bits (2 rounds in AES)

Refresher: block cipher design

Key alternation,

over several rounds,

Question: what if S is 'too linear'?

Key alternation,

over several rounds,

each w/ substitution & permutation

Question: what if S is 'too linear'?

Form of the S-box

- 1. A linear function on all N bits
- 2. Linear 'most of the time'
- 3. The 1st bit of output is a linear function of the 1st bit of input
- 4. Some subset of the output bits is linearly correlated with some subset of input bits
- 5. The difference in two S-box values is connected by a linear function

How to break the cipher

- 1. Solve a system of linear equations
- 2. Solve linear programming problem
- 3. Same as #1 (partial breaks count too)
- 4. Consider more correlations...

5. This is the derivative of the previous questions (in the calculus sense)

Question: what if S is 'too linear'?

Confusion

- Uncertain K -> can't correlate X, Y
- Ideal: Prob[correlation] so small that attacker prefers a brute force attack

Linear cryptanalysis

Exploits the fact that S may behave 'similarly' to a linear function

Diffusion

- 1 bit $\Delta X \rightarrow huge \Delta Y$
- Ideal: each output bit depends on all input bits (2 rounds in AES)

Differential cryptanalysis (our focus)

Exploits the fact that *differences* in inputs + outputs may be correlated

2. One-round cryptanalysis

Our first differential cryptanalysis

Consider a one-time pad

- Claude Shannon (and others) showed that it is 'perfectly hiding'
- Concretely: if you don't know K, then it is impossible to correlate X and Y

What about a two-time pad?

- Suppose attacker has two X/Y pairs
- Confusion disappears!
- Concretely: even without knowing K, we can say for sure that $\Delta X = \Delta Y$
 - $-\Delta X = X \oplus X'$
 - $-\Delta Y = Y \oplus Y'$

The TOY cipher

TOY cipher design = an S-box sandwiched by one-time pads

Concrete sizes

- 4-bit input X and output Y
- 8-bit total key
- S-box has 2⁴ = 16 total inputs/outputs

Hope: cannot break TOY faster than a brute-force search of 2⁸ = 256 keys

Sadly, this hope is false

Differential cryptanalysis of TOY

- Consider two input/output pairs
- What do we know about differences?
- $\Delta X = \Delta I$ and $\Delta J = \Delta Y$, indep of key
- This doesn't directly relate ΔX and ΔY ... but, at least we learned that it suffices to connect ΔI with ΔJ
- Remember: $\triangle J = J \oplus J' = S[I] \oplus S[I']$
- New plan: try all pairs I, I' that differ by ΔI, see which yields a difference of ΔJ on the other side of the S-box

Concrete example

- Input X = 0 maps to output Y = 11 (i.e., 0xB)
- Input X' = 15 maps to output Y' = 15 (i.e., 0xF)

5)					
K	$K_0 = I$		S[1]	S[I']	$S[I] \oplus S[I']$
	0	f	6	b	d
	1	е	4	9	d
	2	d	С	a	6
	3	С	5	8	d
	4	b	0	d	d
	5	a	7	3	4
	6	9	2	f	d
	7	8	e	1	f
	8	7	1	е	f
	9	6	f	2	d
	a	5	3	7	4
	b	4	d	0	d
	с 3		8	5	d
	d	2	a	C	6
	е	1	9	4	d
f 0			b	6	d

Two possible keys: (5,C) and (A,8)

3. Adding more rounds

Differential cryptanalysis of 2TOY

- Main rule of cipher design: if the cipher breaks, simply add more rounds
- Now we don't know all differences
- But if we did know $\Delta H = \Delta I$ then we would be back to TOY's analysis
- Let's see if we can fake it!
 - Suppose $\Delta X = 0xF$ just as before
 - Then $\Delta I = 0xD$ with prob 10/16
 - Simply assume that's the case, and conduct the TOY cryptanalysis attack
 - Find values of K_2 consistent with $\Delta I = S^{-1}[Y] + S^{-1}[Y']$
- If Pr[guess] is high enough, then will often get the right answer

Differential trails through 3TOY

Two central themes of differential cryptanalysis

- 1. Internal variables might depend on the key, but differences between them may not!
- 2. Narrow key space by testing when (parts of) the key are consistent with known Δs

Differential trails through 3TOY

Question: What is the probability of this trail occurring?

Difference propagation table

Output difference

	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	-	6	-	-	-	-	2	-	2	-	-	2	-	4	-
2	_	6	6	-	-	-	-	-	-	2	2	-	-	-	-	-
3	-	-	-	6	-	2	-	-	2	-	_	-	4	-	2	-
4	-	-	-	2	-	2	4	-	-	2	2	2	-	-	2	-
5	-	2	2	-	4	-	-	4	2	-	-	2	-	-	-	-
6	_	-	2	-	4	-	-	2	2	-	2	2	2	-	-	-
7	_	-	-	-	-	4	4	-	2	2	2	2	-	-	-	-
8	-	-	-	-	-	2	-	2	4	-	-	4	-	2	-	2
9	-	2	-	-	-	2	2	2	-	4	2	-	-	-	-	2
а	-	-	-	-	2	2	-	-	-	4	4	-	2	2	-	-
b	_	_	-	2	2	-	2	2	2	-	_	4	-	-	2	-
С	_	4	-	2	-	2	-	-	2	-	_	-	-	-	6	-
d	_	-	-	-	-	-	2	2	-	-	-	-	6	2		4
е	-	2	-	4	2	-	-	-	-	-	2	_	-	-	-	6
																2

Table is based on S-box alone

Try all inputs differing by row value, see how often their outputs differ by column value

1	,1'	S[I]	S[I']	$S[I] \oplus S[I']$
0	f	6	b	d
1	е	4	9	d
2	d	С	а	6
3	С	5	8	d
4	b	0	d	d
5	a	7	3	4
6	9	2	f	d
7	8	е	1	f
8	7	1	е	f
9	6	f	2	d
a	5	3	7	4
b	4	d	0	d
C	3	8	5	d
d	2	a	С	6
е	1	9	4	d
f	0	b	6	d

Difference propagation table

Output difference

	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
					-							-	-	-	-	-
					-											
2	-	6	6	-	-	-	-	-	-	2	2	-	-	-	-	-
3	_	-	-	6	-	2	-	-	2	-	-	-	4	-	2	-
4	_	-	-	2	-	2	4	-	-	2	2	2	-	-	2	-
					4											
6	-	-	2	-	4	_	-	2	2	-	2	2	2	-	-	-
7	-	-	-	-	-	4	4	-	2	2	2	2	-	-	-	-
8	-	-	-		_											
9	-	2	-	-	-	2	2	2	-	4	2	-	-	-	-	2
а	-	-	-	-	2	2	-	-	-	4	4	-	2	2	-	-
b	_	_	_		2								_	_	2	-
С	_	4	_	2	_	2	_	_	2	_	-	-	-	-	6	-
d	_	-	-	-	-	- (2	.2.	_	-	_	-	6	2	-	4
е	_	2	-	4	2	_	_	_	_	-	2	****	_	_	-	6
f	-	-	-	-	2	-	2	-	-	-	-	-	- (10) –	2

Table is based on S-box alone

Try all inputs differing by row value, see how often their outputs differ by column value

Computing Pr[trail]

Look up probability of each link, and multiply them together

$$Pr[F \rightarrow D \rightarrow 6 \rightarrow 4]$$

$$\approx \Pr[F \rightarrow D] \cdot \Pr[D \rightarrow 6] \cdot \Pr[6 \rightarrow 4]$$

$$= 10/16 \cdot 2/16 \cdot 4/16 = 5/256$$

(Actually, the probabilities are not independent, whoops. But it tends to yield a value close to the right answer.)

Difference propagation table

Output difference

	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	-	6	-	-	-	-	2	-	2	-	-	2	-	4	-
2	-	6	6	-	-	-	-	-	-	2	2	-	-	-	-	_
3	-	-	-	6	-	2	-	-	2	-	-	-	4	-	2	-
4	-	-	-	2	-	2	4	-	-	2	2	2	-	-	2	-
5	-	2	2	-	4	-	-	4	2	-	-	2	-	-	-	-
6	-	-	2	-	4	-	-	2	2	-	2	2	2	-	-	-
7	-	-	-	-	-	4	4	-	2	2	2	2	-	-	-	-
8	-	-	-	-	-	2	-	2	4	-	-	4	-	2	-	2
	-															
а	-	-	-	-	2	2	-	-	-	4	4	-	2	2	-	-
b	-	_	_	2	2	-	2	2	2	-	_	4	-	-	2	-
	-															
	-															
е	_	2	-	4	2	-	-	_	-	-	2	-	-	-	-	6/
f	-	-	-	-	2	-	2	-	-	-	-	-	- (10)-	2

Def. Max difference propagation

Largest one-round difference propagation in the entire table

Max difference propagation in the AES S-box

```
aesS = mq.SR(10,4,4,8,True).sbox()

def print_biases(Sbox):
    print "difference propagation:", Sbox.maximal_difference_probability_absolute(), "out of", 2^len(Sbox)
    print "linear bias:", Sbox.maximal_linear_bias_absolute(), "out of", 2^(len(Sbox)-1)

print_biases(aesS)

difference propagation: 4 out of 256
    linear bias: 16 out of 128
```

Cryptanalysis of AES: Wide trail strategy through 4 rounds

- Picture depicts 4 rounds of AES
 - ≥ 25 active S-boxes in 4 rounds
 - Each has max diff propagation of 2⁻⁶
- So Pr [four-round trail] ≈ 2⁻¹⁵⁰
 - An 8-round trail has C < 2⁻³⁰⁰
 - A 12-round trail has C < 2⁻⁴⁵⁰
- Brute force search is better

"Instead of spending most of its resources on large S-boxes, the wide trail strategy aims at designing the round transformations such that there are no [linear or differential] trails/characteristics of low weight"

Bounds for differential trails in KECCAK-f[1600]

Rounds	Low	er bound	Best known					
1	2		2					
2	8		8					
3	32	[Keccak team]	32	[Duc et al.]				
4			134	[Keccak team]				
5			510	[Naya-Plasencia et al.]				
6	74	[Keccak team]	1360	[KECCAK team]				
24	296		???					