
Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
1

Chapter 17 Exceptions and

Assertions

CS436/636: subset of slides from Java

textbook by Liang with a few added

comments

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
2

Objectives
 To know what is exception and what is exception handling

(§17.2).

 To distinguish exception types: Error (fatal) vs. Exception (non-
fatal), and checked vs. uncheck exceptions (§17.2).

 To declare exceptions in the method header (§17.3).

 To throw exceptions out of a method (§17.3).

 To write a try-catch block to handle exceptions (§17.3).

 To explain how an exception is propagated (§17.3).

 To rethrow exceptions in a try-catch block (§17.4).

 To use the finally clause in a try-catch block (§17.5).

 To know when to use exceptions (§17.6).

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
3

Syntax Errors, Runtime Errors, and

Logic Errors

You learned that there are three categories of

errors: syntax errors, runtime errors, and logic

errors. Syntax errors arise because the rules of

the language have not been followed. They are

detected by the compiler. Runtime errors occur

while the program is running if the environment

detects an operation that is impossible to carry

out. Logic errors occur when a program doesn't

perform the way it was intended to.
Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
4

Runtime Errors

import java.util.Scanner;

public class ExceptionDemo {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter an integer: ");

 int number = scanner.nextInt();

 // Display the result

 System.out.println(

 "The number entered is " + number);

 }

}

If an exception occurs on this

line, the rest of the lines in the

method are skipped and the

program is terminated.

Terminated.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

import java.util.Scanner;

public class ExceptionDemo {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter an integer: ");

 int number = scanner.nextInt();

 // Display the result

 System.out.println(

 "The number entered is " + number);

 }

}

If an exception occurs on this

line, the rest of the lines in the

method are skipped and the

program is terminated.

Terminated.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

CS436/636: Scanner only throws unchecked

exceptions, so we don't have to declare them.

However, SQLException of JDBC is a checked

exception, needs more work by the programmer.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
5

Catch Runtime Errors

import java.util.*;

public class HandleExceptionDemo {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

boolean continueInput = true;

 do {

 try {

 System.out.print("Enter an integer: ");

 int number = scanner.nextInt();

 // Display the result

 System.out.println(

 "The number entered is " + number);

 continueInput = false;

 }

 catch (InputMismatchException ex) {

 System.out.println("Try again. (" +

 "Incorrect input: an integer is required)");

 scanner.nextLine(); // discard input

 }

 } while (continueInput);

 }

}

If an exception occurs on this line,

the rest of lines in the try block are

skipped and the control is

transferred to the catch block.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

13

Run

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
6

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

Exceptions
Exception describes errors

caused by your program

and external

circumstances. These

errors can be caught and

handled by your program.

Some are checked

exceptions.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
7

Runtime Exceptions

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

RuntimeException is caused by

programming errors, such as bad

casting, accessing an out-of-bounds

array, and numeric errors. They are

unchecked exceptions.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
8

Checked Exceptions vs.

Unchecked Exceptions

RuntimeException, Error and their subclasses are

known as unchecked exceptions. All other

exceptions are known as checked exceptions,

meaning that the compiler forces the programmer

to check and deal with the exceptions.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
9

Unchecked Exceptions

In most cases, unchecked exceptions reflect programming

logic errors that are not recoverable. For example, a

NullPointerException is thrown if you access an object

through a reference variable before an object is assigned to

it; an IndexOutOfBoundsException is thrown if you access

an element in an array outside the bounds of the array.

These are the logic errors that should be corrected in the

program. Unchecked exceptions can occur anywhere in the

program. To avoid cumbersome overuse of try-catch

blocks, Java does not mandate you to write code to catch

unchecked exceptions.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
10

Declaring, Throwing, and

Catching Exceptions

method1() {

 try {

 invoke method2;

 }

 catch (Exception ex) {

 Process exception;

 }

}

method2() throws Exception {

 if (an error occurs) {

 throw new Exception();

 }

}

catch exception throw exception

declare exception

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
11

Declaring Exceptions

Every method must state the types of checked

exceptions it might throw. This is known as

declaring exceptions.

public void myMethod()

throws IOException

public void myMethod()

throws IOException, OtherException

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
12

Throwing Exceptions

When the program detects an error, the program
can create an instance of an appropriate exception
type and throw it. This is known as throwing an
exception. Here is an example,

throw new TheException();

TheException ex = new TheException();
throw ex;

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
13

Throwing Exceptions Example

/** Set a new radius */

public void setRadius(double newRadius)

throws IllegalArgumentException {

if (newRadius >= 0)

radius = newRadius;

else

throw new IllegalArgumentException(

"Radius cannot be negative");

}

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
14

Catching Exceptions
try {

statements; // Statements that may throw exceptions

}

catch (Exception1 exVar1) {

handler for exception1;

}

catch (Exception2 exVar2) {

handler for exception2;

}

...

catch (ExceptionN exVar3) {

handler for exceptionN;

}

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
15

Catching Exceptions

main method {

 ...

 try {

 ...

 invoke method1;

 statement1;

 }

 catch (Exception1 ex1) {

 Process ex1;

 }

 statement2;

}

method1 {

 ...

 try {

 ...

 invoke method2;

 statement3;

 }

 catch (Exception2 ex2) {

 Process ex2;

 }

 statement4;

}

method2 {

 ...

 try {

 ...

 invoke method3;

 statement5;

 }

 catch (Exception3 ex3) {

 Process ex3;

 }

 statement6;

}

An exception

is thrown in

method3

• If the exception is of type Exception3, it will cause the

catch of method2 to execute.

• If the exception is of type Exception2, it will cause the

catch of method1 to execute.

• If the exception is of type Exception1, it will cause the

catch of method to execute.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
16

Catch or Declare Checked Exceptions

Java forces you to deal with checked exceptions. If a method declares a

checked exception (i.e., an exception other than Error or

RuntimeException), you must invoke it in a try-catch block or declare to

throw the exception in the calling method. For example, suppose that

method p1 invokes method p2 and p2 may throw a checked exception (e.g.,

IOException), you have to write the code as shown in (a) or (b).

void p1() {

 try {

 p2();

 }

 catch (IOException ex) {

 ...

 }

}

(a)

(b)

void p1() throws IOException {

 p2();

}

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
17

Rethrowing Exceptions

try {

statements;

}

catch(TheException ex) {

perform operations before here;

throw ex;

}

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
18

The finally Clause

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

CS436/636: we'll use finally to close our JDBC

objects, needed because they involve OS resources.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
19

Trace a Program Execution
animation

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

Suppose no
exceptions in the
statements

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
20

Trace a Program Execution
animation

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The final block is
always executed

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
21

Trace a Program Execution
animation

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

Next statement in the
method is executed

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
22

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

Suppose an exception
of type Exception1 is
thrown in statement2

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
23

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The exception is
handled.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
24

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The final block is
always executed.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
25

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The next statement in
the method is now
executed.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
26

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

statement2 throws an
exception of type
Exception2.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
27

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

Handling exception

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
28

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

Execute the final block

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
29

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

Rethrow the exception
and control is
transferred to the caller

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
30

Cautions When Using Exceptions

Exception handling separates error-handling

code from normal programming tasks, thus

making programs easier to read and to modify.

Be aware, however, that exception handling

usually requires more time and resources

because it requires instantiating a new exception

object, rolling back the call stack, and

propagating the errors to the calling methods.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All

rights reserved. 0-13-222158-6
31

When to Throw Exceptions

An exception occurs in a method. If you want

the exception to be processed by its caller, you

should create an exception object and throw it.

If you can handle the exception in the method

where it occurs, there is no need to throw it.

However, ignoring an error is a "code smell":

always explain in a comment if you choose

to do nothing about an exception.

