
Filters

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento1

AOP

Aspect-oriented programming (AOP) attempts to aid
programmers in the separation of concerns, specifically
cross-cutting concerns, as an advance in modularization.

Logging and authorization offer two examples of
crosscutting concerns:

a logging strategy necessarily affects every single logged
part of the system. Logging thereby crosscuts all logged
classes and methods.

Same is true for authorization.

Filters (javax.servlet.filter)
Classes that preprocess/postprocess request/response

A filter is an object that performs filtering tasks on either the
• request to a resource (a servlet or static content),
• the response from a resource.

Filters perform filtering in the doFilter method. Every Filter has
access to a FilterConfig object from which it can obtain its
initialization parameters, a reference to the ServletContext
which it can use, for example, to load resources needed for
filtering tasks.

They provide the ability to encapsulate recurring tasks in reusable
units.

Filters (javax.servlet.filter)

Filters are configured:
• in the deployment descriptor of a web application
• via annotation (See

https://docs.oracle.com/javaee/7/api/javax/servlet/annotation/WebFilter.html)

https://docs.oracle.com/javaee/7/api/javax/servlet/annotation/WebFilter.html

Filters
Filters can perform many different types of functions:

* Authentication -> Blocking requests based on user identity
* Logging and auditing -> Tracking users of a web application
* Image conversion -> Scaling maps, and so on.
* Data compression ->Making downloads smaller.
* Localization -> Targeting the request and response to a particular
locale.
* XSL/T -> transformations of XML content-Targeting web
application responses to more that one type of client.

These are just a few of the applications of filters. There are many
more, such as encryption, tokenizing, triggering resource access
events, mime-type chaining, and caching.

Filters
The filtering API is defined by the Filter, FilterChain, and

FilterConfig interfaces in the javax.servlet package. You define a
filter by implementing the Filter interface.

The most important method in this interface is doFilter, which is
passed request, response, and filter chain objects. This method can
perform the following actions:

1. Examine the request headers.
2. Customize the request object and response objects if needed
3. Invoke the next entity in the filter chain (configured in the

WAR). The filter invokes the next entity by calling the doFilter
method on the chain object (passing in the request and response it
was called with, or the wrapped versions it may have created).

Filters methods (javax.servlet.filter)

• public void doFilter (ServletRequest, ServletResponse, FilterChain)
• This method is called by the container each time a request/response pair is

passed through the chain due to a client request for a resource at the end of
the chain.

• public void init(FilterConfig filterConfig)
• This method is called by the web container to indicate to a filter that it is being

placed into service.

• public void destroy()
• This method is called by the web container to indicate to a filter that it is being

taken out of service.

Filter example
import javax.servlet.*; import javax.servlet.http.*;
import java.io.*;
public class LoginFilter implements Filter {

protected FilterConfig filterConfig;
public void init(FilterConfig filterConfig) throws

ServletException{this.filterConfig =filterConfig; }
public void destroy() {this.filterConfig = null; }
public void doFilter(ServletRequest req,

ServletResponse res, FilterChain chain) throws
java.io.IOException, ServletException {

HttpServletRequest hreq=(ServletRequest)req;
String username = hreq.getParameter("j_username");
if (isUserOk(username)) chain.doFilter(request,response);
res.sendError(

javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);
}

}

Configuration
<filter id="Filter_1">

<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login

operation</description>
</filter-id>

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Filters Application Order
The order of filter-mapping elements in web.xml determines the
order in which the web container applies the filter to the servlet.

To reverse the order of the filter, you just need to reverse the
filter-mapping elements in the web.xml file.

Filter sequencing example
<filter>
<filter-name>Uncompress</filter-name>
<filter-class>compressFilters.createUncompress</filter-
class>
</filter>
<filter>
<filter-name>Authenticate</filter-name>
<filter-class>authentication.createAuthenticate</filter-
class>
</filter>
<filter-mapping>
<filter-name>Uncompress</filter-name>
<url-pattern>/status/compressed/*</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>Authenticate</filter-name>
<url-pattern>/status/compressed/*</url-pattern>
</filter-mapping>

Both Uncompress and Authenticate appear on the filter chain for servlets
located at /status/compressed/*.
The Uncompress filter precedes the Authenticate filter in the chain because
the Uncompress filter appears before the Authenticate filter in the web.xml
file.

Example: Filters and sessions
public void doFilter(ServletRequest req,

ServletResponse res, FilterChain chain) throws
java.io.IOException, ServletException {

HttpServletRequest hreq=(HttpServletRequest) req;
HttpSession session = hreq.getSession(false);
if (null == session |

!(Boolean)session.getAttribute("auth")) {
if (isUserOk(hreq.getParameter("user")){
session=hreq.getSession(true);
session.setAttribute("auth",new Boolean(true));

} else res.sendError(
javax.servlet.http.HttpServletResponse.SC_UNAU
THORIZED);

}
chain.doFilter(request, response);

}
private boolean isUserOk(String name) {…}

Example: Filters and parameters
java.util.ArrayList userList=null;
public void init(FilterConfig fc) throws ServletException {

this.filterConfig = fc;
BufferedReader in;
userList = new java.util.ArrayList();
if (fc != null) {

try {
String filename = fc.getInitParameter("Users");
in = new BufferedReader(new FileReader(filename));

} catch (FileNotFoundException fnfe) {
writeErrorMessage(fnfe); return;

}
String userName;
try {

while ((userName = in.readLine()) != null)
userList.add(userName);

} catch (IOException ioe) {writeErrorMessage(ioe);return;}
}

}
public void destroy() { this.filterConfig = null; userList = null;}

Filters and parameters
<filter id="Filter_1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login

operation</description>
<init-param>
<param-name>Users</param-name>
<param-value>c:\mydir\Users.lst</param-value>

</init-param>
</filter>

Furtherexamples

http://www.oracle.com/technetwork/java/filters-137243.html

https://www.tutorialspoint.com/servlets/servlets-writing-filters.htm

http://www.oracle.com/technetwork/java/filters-137243.html
https://www.tutorialspoint.com/servlets/servlets-writing-filters.htm

Access to DB

Using JDBC in servlets

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento16

17

ht
tp

d

In
te

rn
et

HTTP Request

Cgi-bin Query SQL

pr
oc

es
s

DB

Data

Client

Smart
browser

Server

File System

HTTP Response

JDBC Driver types
Java

application

JDBC
API

JDBC-ODBC
Bridge

Data
source

ODBC
API

Type 1 – JDBC-ODBC Bridge

Java
application

JDBC
API

JDBC
Driver

Data
source

Type 4 – Pure Java

Java
application

JDBC
API

JDBC
Driver

Data
source

Vendor
API

Type 2 – Part Java, Part Native

Java
application

JDBC
API

JDBC
Driver

Data
source

Native
Driver

JDBC
Driver
Server

Type 3 – Intermediate DB Access Server

JDBC – Installation and usage

1) Install a driver on your machine.
Your driver should include instructions for installing it. For
JDBC drivers written for specific DBMSs, installation consists
of just copying the driver onto your machine; there is no
special configuration needed. .

A) Load the driver.
B) Open a connection.
C) Create Statement.
D) Retrieve Values.

Always catch exceptions!
JDBC lets you see the warnings and exceptions generated by
your DBMS and by the Java compiler. To see exceptions, you
can have a catch block print them out. .

Reminder: Class.forName
static Class forName(String className)

Returns the Class object associated with the class or interface
with the given string name.

Typical use:
Object o=Class.forName("java.lang.String").newInstance();

is equivalent to:
Object o=new String();

Class.forName("org.apache.derby.jdbc.ClientDriver");
JDBC – Steps – 1 – Get the drivere

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Class.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Class.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html

JDBC – Steps – 2 - LOAD THE DRIVER

Connection con = DriverManager.getConnection(url, "myLogin",
"myPassword");

If you are using a JDBC driver developed by a third party, the documentation
will tell you what subprotocol to use, that is, what to put after jdbc: in the JDBC
URL. For example, if the driver developer has registered the name acme as the
subprotocol, the first and second parts of the JDBC URL will be jdbc:acme: . The
driver documentation will also give you guidelines for the rest of the JDBC URL.
This last part of the JDBC URL supplies information for identifying the data
source.

example: String dbURL = "jdbc:derby://localhost:1527/DemoDB";

JDBC – Steps – 3 CREATE STATEMENT

A Statement object is what sends your SQL statement to the DBMS.

For a SELECT statement, the method to use is executeQuery .
For statements that create or modify tables, the method to use is executeUpdate.

Statement stmt = con.createStatement();
stmt.executeUpdate("CREATE TABLE COFFEES " +

"(COF_NAME VARCHAR(32), SUP_ID INTEGER, PRICE FLOAT, " +
"SALES INTEGER, TOTAL INTEGER)");

Typically you would put the SQL statement in a String (called let’s say createTableCoffees), and
then use
stmt.executeUpdate(createTableCoffees);

JDBC – Steps – 4 RETRIEVING VALUES

JDBC returns results in a ResultSet object.
ResultSet rs = stmt.executeQuery("SELECT COF_NAME, PRICE FROM COFFEES");
In order to access the names and prices, we will go to each row and retrieve the values according to their
types. The method next moves what is called a cursor to the next row and makes that row (called the
current row) the one upon which we can operate. Since the cursor is initially positioned just above the first
row of a ResultSet object, the first call to the method next moves the cursor to the first row and makes it the
current row. Successive invocations of the method next move the cursor down one row at a time from top to
bottom. Note that with the JDBC 2.0 API, you can move the cursor backwards, to specific positions, and to
positions relative to the current row in addition to moving the curs or forward.
String query = "SELECT COF_NAME, PRICE FROM COFFEES"; ResultSet rs = stmt.executeQuery(query);
while (rs.next()) {

String s = rs.getString("COF_NAME");
float n = rs.getFloat("PRICE");
System.out.println(s + " " + n);

}

ResultSet 5 -creates

The java.sql Object Model

Applicazione

Prepared
Statement

Callable
Statement

Connection

getConnection() 3 -creates

createStatement()

executeQuery()
getString()

ResultSet
Metadata

DBMetaData

2 -loadsDriver
Manager Driver

1 - creates

Statement

4 -creates

RowSet

for RowSet see https://docs.oracle.com/javase/tutorial/jdbc/basics/jdbcrowset.html

https://docs.oracle.com/javase/tutorial/jdbc/basics/jdbcrowset.html

JDBC – Prepared statements

If you want to execute a Statement object many times, it will normally reduce
execution time to use a PreparedStatement object instead.

The main feature of a PreparedStatement object is that, unlike a Statement
object, it is given an SQL statement when it is created.

The advantage to this is that in most cases, this SQL statement will be sent to
the DBMS right away, where it will be compiled. As a result, the
PreparedStatement object contains not just an SQL statement, but an SQL
statement that has been precompiled.
This means that when the PreparedStatement is executed, the DBMS can just
run the PreparedStatement 's SQL statement without having to compile it first.

PreparedStatement updateSales = con.prepareStatement("UPDATE COFFEES
SET SALES = ? WHERE COF_NAME LIKE ?");
updateSales.setInt(1, 75);

JDBC – Callable statements

A stored procedure is a group of SQL statements that form a logical unit and
perform a particular task. Stored procedures are used to encapsulate a set of
operations or queries to execute on a database server. For example, operations
on an employee database (hire, fire, promote, lookup) could be coded as stored
procedures executed by application code. Stored procedures can be compiled
and executed with different parameters and results, and they may have any
combination of input, output, and input/output parameters.
Stored procedures are supported by most DBMSs, but there is a fair amount of
variation in their syntax and capabilities.

If you want to call stored procedures, you must use a CallableStatement
(subclass of PreparedStatement).

WARNING: stored procedures move the business logic WITHIN THE DB!

Netbeans configuration – 1 Create WebApp

Netbeans configuration – 2
in Project Properties add Library "Java DB"

Netbeans configuration – 3
in Services create Database

right cllck on JavaDB, choose "create", add requested info, click on properties
and make the DB Location within your project

Netbeans configuration – 4
rename the created connection (if needed),
right-click it and "connect"

Netbeans configuration – 5
create table

Netbeans configuration – 6
populate DB

right click on command and choose "Run Statement"

Right click on "DEMO " and select "Show Dada"

Create servlet

Go to the project, and create a servlet called "TheServlet"

Edit it as shown in the next slides

Example
@WebServlet(urlPatterns = {"/TheServlet"})
public class TheServlet extends HttpServlet {

String dbURL = "jdbc:derby://localhost:1527/MyDerbyDB";
String user = "name";
String password = "pw";
Connection conn = null;

@Override
public void init() {

try {
Class.forName("org.apache.derby.jdbc.ClientDriver");
conn = DriverManager.getConnection(dbURL, user, password);

} catch (ClassNotFoundException | SQLException ex) {
ex.printStackTrace();

}
}
@Override
public void destroy() {

try {
conn.close();

} catch (SQLException ex) {
ex.printStackTrace();

}
}

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento34

Example

protected void processRequest(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
StringBuffer dbOutput = new StringBuffer("<h1>");
try {

Statement stmt = conn.createStatement();
String sql = "SELECT ID, NAME FROM DEMO";
ResultSet results = stmt.executeQuery(sql);
while (results.next()) {

dbOutput.append(results.getString(1)).append(" - ");
dbOutput.append(results.getString(2)).append("</h1>");

}
} catch (SQLException ex) {

dbOutput.append(ex.toString()).append("</h1>");
}
try (PrintWriter out = response.getWriter()) {

out.println("<!DOCTYPE html><html><head>");
out.println("<title>Servlet TheServlet</title>");
out.println("</head><body>");
out.println(dbOutput.toString());
out.println("</body><html>");

}
}

… doGet, doPost, getServletInfo: leave them as they are
}

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento35

Run file…

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento36

Connection management
We created the connection in the init method, and closed it in the
destroy ("per Servlet connection"). Is this a good idea?
Alternatives:
create the connection in the doXXX (or processRequest) method
("per Request connection")

perServlet:
§ many connections simultaneously open
§ concurrency bottleneck
perRequest
§ lots of open/close (slow!)

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento37

Connection management
We could create "per Session" connection.
perSession:
§ every user has one connection, and reuses it
§ potentially many connections , with low usage each
§ sessions reman alive as long as the connection lives
Connection pooling
§ servlets share a set of existing connection
§ more complex
§ infrastructures exist to allow it

(Yet another possibility would have been "one connection per Web App".
How could you have implemented it? What are its advantages and
disadvantages?)

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento38

Connection management

https://examples.javacodegeeks.com/enterprise-
java/tomcat/tomcat-connection-pool-configuration-example/

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento39

https://www.oreilly.com/library/view/java-programming-with/059600088X/ch04s02.html

In depth discussion, with examples

About connection pooling with Tomcat

https://examples.javacodegeeks.com/enterprise-java/tomcat/tomcat-connection-pool-configuration-example/
https://www.oreilly.com/library/view/java-programming-with/059600088X/ch04s02.html

References about jdbc
https://docs.oracle.com/javase/tutorial/jdbc
/basics/index.html

https://www.journaldev.com/2471/jdbc-
example-mysql-oracle

https://www.tutorialspoint.com/servlets/ser
vlets-database-access.htm

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento40

https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html
https://www.journaldev.com/2471/jdbc-example-mysql-oracle
https://www.tutorialspoint.com/servlets/servlets-database-access.htm

Extra references
if you need to refresh your SQL:
https://www.w3schools.com/sql/default.asp

If you need to install JavaDB (Derby)
https://www.codejava.net/java-se/jdbc/how-
to-get-started-with-apache-derby-javadb

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento41

https://www.w3schools.com/sql/default.asp
https://www.codejava.net/java-se/jdbc/how-to-get-started-with-apache-derby-javadb

Wrap up exercise

Build a web page showing a list of item, and the detail of one of them.

By clicking on an item in the list, the detail part will show its data (which have to be
fetch and replaced via Ajax, retrieving them from a database).

The last 5 viewed items are listed in the bottom of the page. This list is obviously
personalized for each user.

Access to the page is allowed only to authenticated users – authentication has to be
checked via a filter, which in case of failure redirects to a login page.

