
Lists

Introduction to Programming and Problem Solving
Erdogan Dogdu
Computer Science Department / Angelo State University

Programming

• Algorithm
• A set of rules or steps used to solve a problem

• Data Structure
• A particular way of organizing data in a computer

• https://en.wikipedia.org/wiki/Algorithm
• https://en.wikipedia.org/wiki/Data_structure

2

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Data_structure

What is Not a “Collection”?

• Most of our variables have one value in them - when we put
a new value in the variable, the old value is overwritten

$ python
>>> x = 2
>>> x = 4
>>> print(x)
4

3

A List is a Kind of Collection

• A collection allows us to put many values in a single
“variable”
• A collection is nice because we can carry all many values

around in one convenient package.
friends = ['Joseph', 'Glenn', 'Sally']

carryon = ['socks', 'shirt', 'perfume']

4

List constants

• List constants are surrounded
by square brackets and the
elements in the list are
separated by commas
• A list element can be any

Python object - even another
list
• A list can be empty

>>> print([1, 24, 76])
[1, 24, 76]
>>> print(['red', 'yellow',
'blue'])
['red', 'yellow', 'blue']
>>> print(['red', 24, 98.6])
['red', 24, 98.6]
>>> print([1, [5, 6], 7])
[1, [5, 6], 7]
>>> print([])
[]

5

We already used lists!

for i in [5, 4, 3, 2, 1] :
print(i)

print('Blastoff!')

5
4
3
2
1
Blastoff!

6

Lists and definite loops (for) - Best Pals

friends = ['Joseph', 'Glenn', 'Sally']
for friend in friends :

print('Happy New Year:', friend)
print('Done!')

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally
Done!

z = ['Joseph', 'Glenn', 'Sally']
for x in z:

print('Happy New Year:', x)
print('Done!')

7

Looking inside lists

• Just like strings, we can get at any single element in a list
using an index specified in square brackets

0
Joseph

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print(friends[1])
Glenn
>>> 1

Glenn
2

Sally

8

Lists are mutable

• Strings are “immutable” -
we cannot change the
contents of a string - we
must make a new string to
make any change
• Lists are “mutable” - we can

change an element of a list
using the index operator

>>> fruit = 'Banana'
>>> fruit[0] = 'b'
Traceback
TypeError: 'str' object does not
support item assignment
>>> x = fruit.lower()
>>> print(x)
banana
>>> lotto = [2, 14, 26, 41, 63]
>>> print(lotto)
[2, 14, 26, 41, 63]
>>> lotto[2] = 28
>>> print(lotto)
[2, 14, 28, 41, 63]

9

How long is a list?

• The len() function takes a
list as a parameter and
returns the number of
elements in the list
• Actually len() tells us the

number of elements of any
set or sequence (such as a
string...)

>>> greet = 'Hello Bob'
>>> print(len(greet))
9
>>> x = [1, 2, 'joe', 99]
>>> print(len(x))
4
>>>

10

Using the range function

• The range function returns
a list of numbers that range
from zero to one less than
the parameter
• We can construct an index

loop using for and an
integer iterator

>>> print(range(4))
[0, 1, 2, 3]
>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print(len(friends))
3
>>> print(range(len(friends)))
[0, 1, 2]
>>>

11

A tale of two loops ...

friends = ['Joseph', 'Glenn', 'Sally']

for friend in friends :
print('Happy New Year:', friend)

for i in range(len(friends)) :
friend = friends[i]
print('Happy New Year:', friend)

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print(len(friends))
3
>>> print(range(len(friends)))
[0, 1, 2]
>>>

12

Concatenating lists using +

• We can create a new list by
adding two existing lists
together

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print(c)
[1, 2, 3, 4, 5, 6]
>>> print(a)
[1, 2, 3]

13

Lists can be sliced using :

>>> t = [9, 41, 12, 3, 74, 15]
>>> t[1:3]
[41,12]
>>> t[:4]
[9, 41, 12, 3]
>>> t[3:]
[3, 74, 15]
>>> t[:]
[9, 41, 12, 3, 74, 15]

Remember: Just like in strings,

the second number is
“up to but not including”

14

List methods

>>> x = list()
>>> type(x)
<type 'list'>
>>> dir(x)
['append', 'count', 'extend', 'index’,
'insert', 'pop', 'remove', 'reverse', 'sort']
>>>

http://docs.python.org/tutorial/datastructures.html

15

http://docs.python.org/tutorial/datastructures.html

Building a list from scratch

• We can create an empty list
and then add elements
using the append method
• The list stays in order and

new elements are added at
the end of the list

>>> stuff = list()
>>> stuff.append('book')
>>> stuff.append(99)
>>> print(stuff)
['book', 99]
>>> stuff.append('cookie')
>>> print(stuff)
['book', 99, 'cookie']

16

Is something in a list?

• Python provides two
operators that let you check
if an item is in a list
(in and not in)
• These are logical operators

that return True or False
• They do not modify the list

>>> some = [1, 9, 21, 10, 16]
>>> 9 in some
True
>>> 15 in some
False
>>> 20 not in some
True
>>>

17

Lists are in order

• A list can hold many items
and keeps those items in the
order until we do something
to change the order
• A list can be sorted

(i.e., change its order)
• The sort method (unlike in

strings) means “sort yourself”

>>> friends = ['Joseph', 'Glenn',
'Sally']
>>> friends.sort()
>>> print(friends)
['Glenn', 'Joseph', 'Sally']
>>> print(friends[1])
Joseph
>>>

18

Built-in functions and lists

• There are a number of
functions built into Python
that take lists as parameters
• Remember the loops we

built? These are much
simpler.

>>> nums = [3, 41, 12, 9, 74, 15]
>>> print(len(nums))
6
>>> print(max(nums))
74
>>> print(min(nums))
3
>>> print(sum(nums))
154
>>> print(sum(nums)/len(nums))
25.6

19

total = 0
count = 0
while True :

inp = input('Enter a number: ')
if inp == 'done' : break
value = float(inp)
total = total + value
count = count + 1

average = total / count
print('Average:', average) numlist = list()

while True :
inp = input('Enter a number: ')
if inp == 'done' : break
value = float(inp)
numlist.append(value)

average = sum(numlist) / len(numlist)
print('Average:', average)

Enter a number: 3
Enter a number: 9
Enter a number: 5
Enter a number: done
Average: 5.66666666667

version 1

version 2 20

Best friends: strings and lists

>>> abc = 'With three words'
>>> stuff = abc.split()
>>> print(stuff)
['With', 'three', 'words']
>>> print(len(stuff))
3
>>> print(stuff[0])
With

>>> print(stuff)
['With', 'three', 'words']
>>> for w in stuff :
... print(w)
...
With
Three
Words
>>>

Split breaks a string into parts and produces a list of strings. We think of these
as words. We can access a particular word or loop through all the words.

21

>>> line = 'A lot of spaces'
>>> etc = line.split()
>>> print(etc)
['A', 'lot', 'of', 'spaces']
>>>
>>> line = 'first;second;third'
>>> thing = line.split()
>>> print(thing)
['first;second;third']
>>> print(len(thing))
1
>>> thing = line.split(';')
>>> print(thing)
['first', 'second', 'third']
>>> print(len(thing))
3
>>>

● When you do not specify a

delimiter, multiple spaces are

treated like one delimiter

● You can specify what delimiter

character to use in the splitting

22

fhand = open('mbox-short.txt')
for line in fhand:

line = line.rstrip()
if not line.startswith('From ') : continue
words = line.split()
print(words[2])

Sat
Fri
Fri
Fri

...

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> line = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
>>> words = line.split()
>>> print(words)
['From', 'stephen.marquard@uct.ac.za', 'Sat', 'Jan', '5', '09:14:16', '2008']
>>> line[2]
Sat

23

The double split pattern

• Sometimes we split a line one way, and then grab one of the
pieces of the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
print pieces[1]

24

The double split pattern

• Sometimes we split a line one way, and then grab one of the
pieces of the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
print pieces[1]

stephen.marquard@uct.ac.za

25

The double split pattern

• Sometimes we split a line one way, and then grab one of the
pieces of the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
pieces = email.split('@')
1]

stephen.marquard@uct.ac.za
['stephen.marquard', 'uct.ac.za']

26

The double split pattern

• Sometimes we split a line one way, and then grab one of the
pieces of the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
pieces = email.split('@’)
print(pieces[1])

stephen.marquard@uct.ac.za
['stephen.marquard', 'uct.ac.za’]
'uct.ac.za'

27

List comprehension

You can create a list using a
for loop:

squares = []
for x in range(5):

squares.append(x**2)
print(squares)

[0, 1, 4, 9, 16]

Or use “list comprehension”
squares =

[x**2 for x in range(5)]
print(squares)
[0, 1, 4, 9, 16]

print([x*x for x in squares])
[0, 1, 16, 81, 256]

28

List comprehension: apply a method

• Apply a method to all elements of a list
freshfruit = [' banana', ' loganberry ', 'passion fruit ‘]
print([x.strip() for x in freshfruit])

['banana', 'loganberry', 'passion fruit’]

freshfruit = [' banana', ' loganberry ', 'passion fruit ‘]
[x.strip() for x in freshfruit if x.find('o')>=0]

['loganberry', 'passion fruit']

29

Nested list comprehension

• Transpose a matrix

matrix = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]]

matrix

[[1, 2, 3, 4], [5, 6, 7, 8],
[9, 10, 11, 12]]

[[row[i] for row in matrix]
for i in range(4)]

[[1, 5, 9], [2, 6, 10],
[3, 7, 11], [4, 8, 12]]

30

List summary

• Concept of a collection
• Lists and definite loops
• Indexing and lookup
• List mutability
• Functions: len, min, max, sum
• Slicing lists

• List methods: append,
remove
• Sorting lists
• Splitting strings into lists of

words
• Using split to parse strings
• List comprehension

31

Acknowledgements / Contributions

• These slides are Copyright 2010- Charles R. Severance (www.dr-chuck.com)
of the University of Michigan School of Information and made available
under a Creative Commons Attribution 4.0 License. Please maintain this last
slide in all copies of the document to comply with the attribution
requirements of the license. If you make a change, feel free to add your
name and organization to the list of contributors on this page as you
republish the materials.

• Initial Development: Charles Severance, University of Michigan School of
Information

• Modified and enhanced by Erdogan Dogdu, Angelo State University, 2020

32

http://www.dr-chuck.com/

