

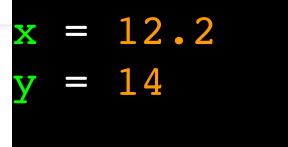
Introduction to Programming and Problem Solving

Erdogan Dogdu

Computer Science Department / Angelo State University

Data

- Computer programs work with data to accomplish tasks, solve problems, etc.
- Simple data can be of numeric or string types.
- Data is stored in variables or presented as constant values in programs.

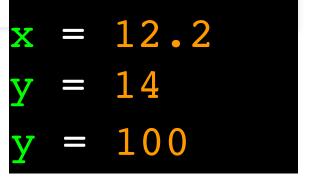

Constants


- Fixed values such as numbers, letters, and strings, are called "constants" because their value does not change
- Numeric constants are as you expect
- String constants use single quotes (') or double quotes (")

```
>>> print(123)
123
>>> print(98.6)
98.6
>>> print('Hello world')
Hello world
```

Variables

- A variable is a named place in the memory where a programmer can store data and later retrieve the data using the variable "name"
- Programmers get to choose the names of the variables
- You can change the contents of a variable in a later statement



y 14

Variables

- A variable is a named place in the memory where a programmer can store data and later retrieve the data using the variable "name"
- Programmers get to choose the names of the variables
- You can change the contents of a variable in a later statement

Python variable name rules

- Must start with a letter or underscore _
- Must consist of letters, numbers, and underscores
- Case Sensitive

```
Good: spam eggs spam23 _speed
Bad: 23spam #sign var.12
Different: spam Spam SPAM SpaåM
```

Reserved Words

You cannot use reserved words as variable names /

identifiers

False	class	return	is	finally
None	if	for	lambda	continue
True	def	from	while	nonlocal
and	del	global	not	with
as	elif	try	or	yield
assert	else	import	pass	
break	except	in	raise	

Mnemonic Variable Names

- Since we programmers are given a choice in how we choose our variable names, there is a bit of "best practice"
- We name variables to help us remember what we intend to store in them ("mnemonic" = "memory aid")
- This can confuse beginning students because well-named variables often "sound" so good that they must be keywords

http://en.wikipedia.org/wiki/Mnemonic

```
x1q3z9ocd = 35.0
x1q3z9afd = 12.50
x1q3p9afd = x1q3z9ocd * x1q3z9afd
print(x1q3p9afd)
```

What is this bit of code doing?

```
x1q3z9ocd = 35.0
x1q3z9afd = 12.50
x1q3p9afd = x1q3z9ocd * x1q3z9afd
print(x1q3p9afd)
```

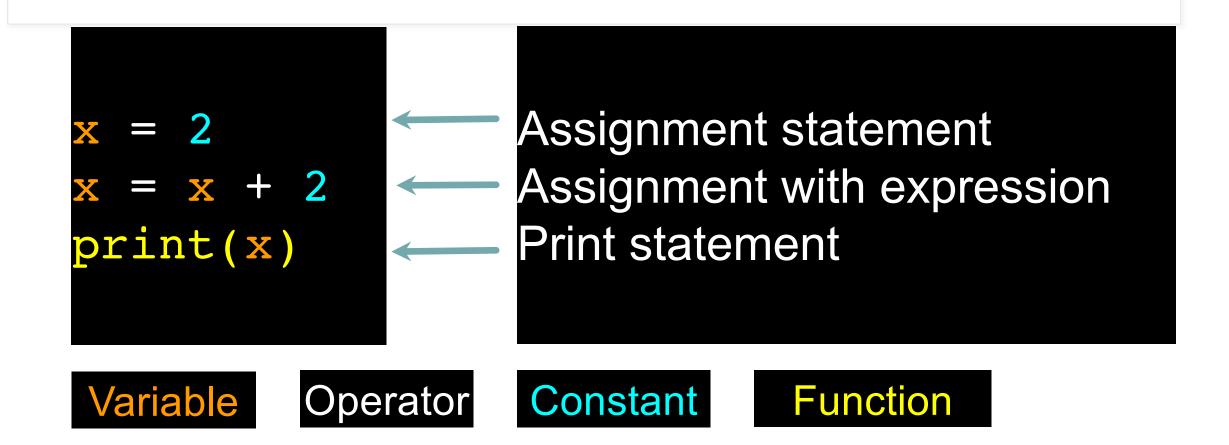
```
a = 35.0
b = 12.50
c = a * b
print(c)
```

What are these bits of code doing?

```
x1q3z9ocd = 35.0
x1q3z9afd = 12.50
x1q3p9afd = x1q3z9ocd * x1q3z9afd
print(x1q3p9afd)
```

```
a = 35.0
b = 12.50
c = a * b
print(c)
```

What are these bits of code doing?

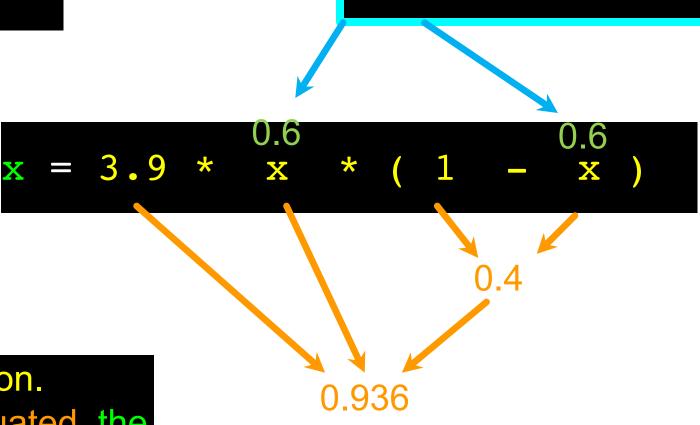

```
hours = 35.0

rate = 12.50

pay = hours * rate

print(pay)
```

Sentences or Lines

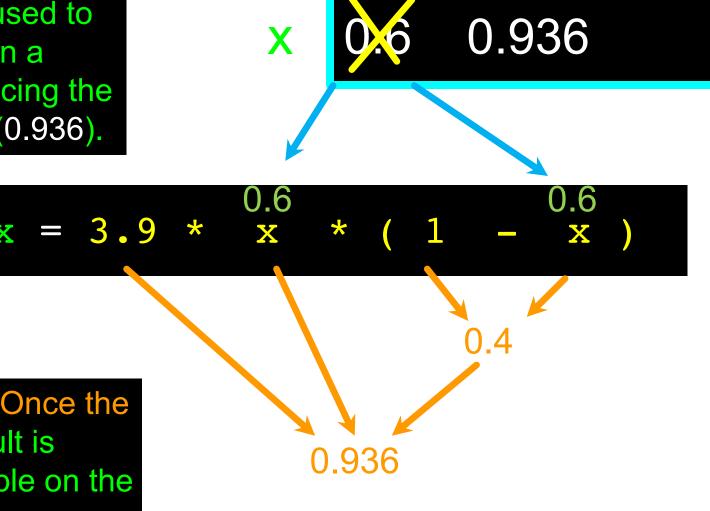


Assignment Statements

- We assign a value to a variable using the assignment statement (=)
- An assignment statement consists of an expression on the right-hand side and a variable to store the result

```
x = 3.9 * x * (1 - x)
Variable Assignment Expression
```

A variable is a memory location used to store a value (0.6)



0.6

The right side is an expression.

Once the expression is evaluated, the result is placed in (assigned to) x.

A variable is a memory location used to store a value. The value stored in a variable can be updated by replacing the old value (0.6) with a new value (0.936).

The right side is an expression. Once the expression is evaluated, the result is placed in (assigned to) the variable on the left side (i.e., x).

Expressions

Numeric Expressions

- Because of the lack of mathematical symbols on computer keyboards we use "computer-speak" to express the classic math operations
- Asterisk (*) is multiplication
- Exponentiation (raise to a power)
 looks different than in math

Operator	Operation
+	Addition
_	Subtraction
*	Multiplication
/	Division
**	Power
%	Remainder

Numeric Expressions

```
>>> xx = 2
>>> xx = xx + 2
>>> print(xx)
>>> yy = 440 * 12
>>> print(yy)
5280
>>> zz = yy / 1000
>>> print(zz)
5.28
```

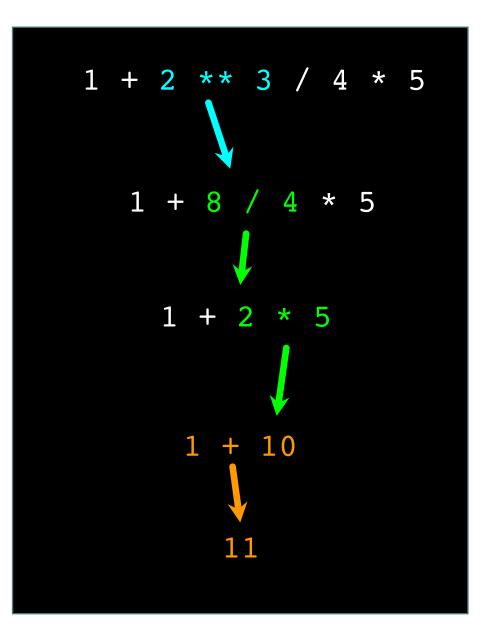
```
>>> jj = 23
>>> kk = jj % 5
>>> print(kk)
>>> print(4 ** 3)
64
        4 R 3
      23
20
```

Operator	Operation	
+	Addition	
-	Subtraction	
*	Multiplication	
/	Division	
**	Power	
%	Remainder	

Order of Evaluation

- When we string operators together Python must know which one to do first
- This is called "operator precedence"
- Which operator "takes precedence" over the others?

$$x = 1 + 2 * 3 - 4 / 5 ** 6$$


Operator Precedence Rules

- Highest precedence rule to lowest precedence rule:
 - Parentheses are always respected
 - Exponentiation (raise to a power)
 - Multiplication, Division, and Remainder
 - Addition and Subtraction
 - Left to right


```
>>> x = 1 + 2 ** 3 / 4 * 5
>>> print(x)
11.0
>>>
```

Parenthesis
Power
Multiplication
Addition
Left to Right

Operator Precedence

- Remember the rules top to bottom
- When writing code use parentheses

```
• x = 1 + 2 ** 3 / 4 * 5
• x = 1 + (((2 ** 3) / 4) * 5) # better
```

- When writing code keep mathematical expressions simple enough that they are easy to understand
- Break long series of mathematical operations up to make them more clear

Parenthesis
Power
Multiplication
Addition
Left to Right

What does "type" mean?

- In Python variables, literals, and constants have a "type"
- Python knows the difference between an integer number and a string
- For example "+" means "addition" if something is a number and "concatenate" if something is a string

```
>>> ddd = 1 + 4
>>> print(ddd)
5
>>> eee = 'hello ' + 'there'
>>> print(eee)
hello there
```

concatenate = put together

Type matters

- Python knows what "type" everything is
- Some operations are prohibited
- You cannot "add 1" to a string
- We can ask Python what type something is by using the type() function

```
>>> eee = 'hello ' + 'there'
>>> eee = eee + 1
Traceback (most recent call last):
File "<stdin>", line 1, in
<module>TypeError: Can't convert
int' object to str implicitly
>>> type(eee)
<class'str'>
>>> type('hello')
<class'str'>
>>> type(1)
<class'int'>
>>>
```

Several types of numbers

- Numbers have two main types
 - Integers are whole numbers:
 -14, -2, 0, 1, 100, 401233
 - - Floating Point Numbers have decimal parts: -2.5, 0.0, 98.6, 14.0
- There are other number types they are variations on float and integer
 - https://docs.python.org/2.4/lib/typesnumeric.html

```
\rightarrow \rightarrow xx = 1
>>> type(xx)
<class 'int'>
\rightarrow \rightarrow temp = 98.6
>>> type(temp)
<class'float'>
>>> type(1)
<class 'int'>
>>> type(1.0)
<class'float'>
```

Type conversions

- When you put an integer and floating point in an expression, the integer is implicitly converted to a float
- You can control this with the built-in functions int() and float()

```
>>> print(float(99) + 100)
199.0
>>> i = 42
>>> type(i)
<class'int'>
>>> f = float(i)
>>> print(f)
42.0
>>> type(f)
<class'float'>
>>>
```

Integer division

 Integer division produces a floating point result

This was different in Python 2.x

```
>>> print(10 / 2)
5.0
>>> print(9 / 2)
4.5
>>> print(99 / 100)
0.99
>>> print(10.0 / 2.0)
5.0
>>> print(99.0 / 100.0)
0.99
```

String conversions

- You can also use int() and float() to convert between strings and integers
- You will get an error if the string does not contain numeric characters

```
>>> <mark>sval = '</mark>123'
>>> type(sval)
<class 'str'>
>>> print(sval + 1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object
to str implicitly
>>> ival = int(sval)
>>> type(ival)
<class 'int'>
>>> print(ival + 1)
124
>>> <mark>nsv</mark> = 'hello bob'
>>> niv = int(nsv)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int()
with base 10: 'x'
```

User Input

- We can instruct Python to pause and read data from the user using the input() function
- The input() function returns a string

```
nam = input('Who are you? ')
print('Welcome', nam)
```

Who are you? Chuck Welcome Chuck

Converting User Input

- If we want to read a number from the user, we must convert it from a string to a number using a type conversion function
- Later we will deal with bad input data

```
inp = input('Europe floor?')
usf = int(inp) + 1
print('US floor', usf)
```

Europe floor? 0
US floor 1

Comments in Python

- Anything after a # is ignored by Python
- Why comment?
 - Describe what is going to happen in a sequence of code
 - Document who wrote the code or other ancillary information
 - Turn off a line of code perhaps temporarily

```
# Get the name of the file and open it
name = input('Enter file:')
handle = open(name, 'r')
 Count word frequency
counts = dict()
for line in handle:
    words = line.split()
    for word in words:
        counts[word] = counts.get(word,0) + 1
# Find the most common word
bigcount = None
bigword = None
for word, count in counts.items():
    if bigcount is None or count > bigcount:
       bigword = word
        bigcount = count
# All done
print(bigword, bigcount)
```

Summary

- Type
- Reserved words
- Variables (mnemonic)
- Operators
- Operator precedence

- Integer Division
- Conversion between types
- User input
- Comments (#)

Exercise

• Write a program to prompt the user for hours and rate per hour to compute gross pay.

Enter Hours: 35

Enter Rate: 2.75

Pay: 96.25

Acknowledgements / Contributions

- These slides are Copyright 2010- Charles R. Severance (www.dr-chuck.com) of the University of Michigan School of Information and made available under a Creative Commons Attribution 4.0 License. Please maintain this last slide in all copies of the document to comply with the attribution requirements of the license. If you make a change, feel free to add your name and organization to the list of contributors on this page as you republish the materials.
- Initial Development: Charles Severance, University of Michigan School of Information
- Modified and enhanced by Erdogan Dogdu, Angelo State University, 2020