
Conditional
Execution

Introduction to Programming and Problem Solving
Erdogan Dogdu
Computer Science Department / Angelo State University

Conditional Steps

Program:

x = 5
if x < 10:

print('Smaller')
if x > 20:

print('Bigger')

print('Finis')

x = 5

x < 10 ?

print('Smaller')

x > 20 ?

print('Bigger')

print('Finis')

Yes

No

Yes

No Output:

Smaller
Finis

2

Comparison Operators

• Boolean expressions ask a
question and produce a Yes or
No result which we use to control
program flow

• Boolean expressions using
comparison operators evaluate
to True / False or Yes / No

• Comparison operators look at
variables but do not change the
variables
http://en.wikipedia.org/wiki/George_Boole

Remember: “=” is used for assignment.

Oprator Meaning
< Less than

<= Less than or Equal to
== Equal to
>= Greater than or Equal to
> Greater than
!= Not equal

3

http://en.wikipedia.org/wiki/George_Boole

Comparison Operators

x = 5
if x == 5 :

print('Equals 5')
if x > 4 :

print('Greater than 4')
if x >= 5 :

print('Greater than or Equals 5')
if x < 6 : print('Less than 6')
if x <= 5 :

print('Less than or Equals 5')
if x != 6 :

print('Not equal 6')

Equals 5

Greater than 4

Greater than or Equals 5

Less than 6

Less than or Equals 5

Not equal 6

4

One-Way Decisions
x = 5
print('Before 5')
if x == 5 :

print('Is 5')
print('Is Still 5')
print('Third 5')

print('Afterwards 5')
print('Before 6')
if x == 6 :

print('Is 6')
print('Is Still 6')
print('Third 6')

print('Afterwards 6')

Before 5

Is 5
Is Still 5
Third 5
Afterwards 5
Before 6

Afterwards 6

x == 5 ?
Yes

print('Still 5')

print('Third 5')

No print('Is 5’)

5

Indentation

• Increase indent indent after an if statement or for statement (after :)
• Maintain indent to indicate the scope of the block (which lines are

affected by the if/for)
• Reduce indent back to the level of the if statement or for statement to

indicate the end of the block
• Blank lines are ignored - they do not affect indentation
• Comments on a line by themselves are ignored with regard to

indentation

6

Warning: Turn Off Tabs!!

• Atom automatically uses spaces for files with ".py" extension
(nice!)
• Most text editors can turn tabs into spaces - make sure to enable

this feature
• - NotePad++: Settings -> Preferences -> Language Menu/Tab Settings
• - TextWrangler: TextWrangler -> Preferences -> Editor Defaults

• Python cares a *lot* about how far a line is indented. If you mix
tabs and spaces, you may get “indentation errors” even if
everything looks fine

7

This will save you
much unnecessary

pain.

8

x = 5
if x > 2 :

print('Bigger than 2')
print('Still bigger')

print('Done with 2')

for i in range(5) :
print(i)
if i > 2 :

print('Bigger than 2')
print('Done with i', i)

print('All Done')

increase / maintain after if or for
decrease to indicate end of block

9

Think about begin/end blocks
x = 5
if x > 2 :

print('Bigger than 2')
print('Still bigger')

print('Done with 2')

for i in range(5) :
print(i)
if i > 2 :

print('Bigger than 2')
print('Done with i', i)

print('All Done')
10

x = 42
if x > 1 :

print('More than one')
if x < 100 :

print('Less than 100')
print('All done')

x > 1

print('More than one’)

x < 100

print('Less than 100')

print('All Done')

yes

yes

no

no

Nested decisions

11

Two-way
Decisions

• Sometimes we want to
do one thing if a logical
expression is true and
something else if the
expression is false

• It is like a fork in the
road - we must choose
one or the other path
but not both

x > 2

print('Bigger')

yesno

x = 4

print('Not bigger')

print('All Done')

12

Two-way decisions
with else:

x > 2

print('Bigger')

yesno

x = 4

print('All Done')

x = 4

if x > 2:
print('Bigger')

else:
print('Smaller')

print('All done')

print('Not bigger')

13

Visualize blocks

x = 4

if x > 2 :
print('Bigger')

else :
print('Smaller')

print('All done')

x > 2

print('Bigger')

yesno

x = 4

print('All Done')

print('Not bigger')

14

More conditional structures…

15

Multi-way

if x < 2 :
print('small')

elif x < 10 :
print('Medium')

else :
print('LARGE')

print('All done')

x < 2 print('small')
yes

no

print('All Done')

x < 10 print('Medium')
yes

print('LARGE')

no

16

Multi-way

x = 0
if x < 2 :

print('small')
elif x < 10 :

print('Medium')
else :

print('LARGE')
print('All done')

x < 2 print('small')
yes

no

print('All Done')

x < 10 print('Medium')
yes

print('LARGE')

no

x = 0

17

Multi-way

x = 5
if x < 2 :

print('small')
elif x < 10 :

print('Medium')
else :

print('LARGE')
print('All done')

x < 2 print('small')
yes

no

print('All Done')

x < 10 print('Medium')
yes

print('LARGE')

no

x = 5

18

Multi-way

x = 20
if x < 2 :

print('small')
elif x < 10 :

print('Medium')
else :

print('LARGE')
print('All done')

x < 2 print('small')
yes

no

print('All Done')

x < 10 print('Medium')
yes

print('LARGE')

no

x = 20

19

Multi-way

No Else
x = 5
if x < 2 :

print('Small')
elif x < 10 :

print('Medium')

print('All done')

if x < 2 :
print('Small')

elif x < 10 :
print('Medium')

elif x < 20 :
print('Big')

elif x < 40 :
print('Large')

elif x < 100:
print('Huge')

else :
print('Ginormous')

20

Multi-way puzzles

if x < 2 :
print('Below 2')

elif x < 20 :
print('Below 20')

elif x < 10 :
print('Below 10')

else :
print('Something else')

if x < 2 :
print('Below 2')

elif x >= 2 :
print('Two or more')

else :
print('Something else')

Which will never print
regardless of the value for x?

21

The try/except structure

• You surround a dangerous section of code with try and
except
• If the code in the try works - the except is skipped
• If the code in the try fails - the except section is executed

22

$ type notry.py
astr = 'Hello Bob'
istr = int(astr)
print('First', istr)
astr = '123'
istr = int(astr)
print('Second', istr)

$ python3 notry.py
Traceback (most recent call
last): File "notry.py", line
2, in <module> istr =
int(astr)ValueError: invalid
literal for int() with base 10:
'Hello Bob'

All
Done

23

$ type notry.py
astr = 'Hello Bob'
istr = int(astr)
print('First', istr)
astr = '123'
istr = int(astr)
print('Second', istr)

$ python3 notry.py
Traceback (most recent call
last): File "notry.py", line
2, in <module> istr =
int(astr)ValueError: invalid
literal for int() with base 10:
'Hello Bob'

All
Done

The
program

stops here

24

astr = 'Hello Bob'
try:

istr = int(astr)
except:

istr = -1

print('First', istr)

astr = '123'
try:

istr = int(astr)
except:

istr = -1

print('Second', istr)

$ python tryexcept.py
First -1
Second 123

When the first conversion fails - it
just drops into the except: clause

and the program continues.

When the second conversion
succeeds - it just skips the except:
clause and the program continues.

25

try / except astr = 'Bob'

astr = 'Bob'
try:

print('Hello')
istr = int(astr)
print('There')

except:
istr = -1

print('Done', istr)

print('Hello')

print('There')

istr = int(astr)

print('Done', istr)

istr = -1

Safety net

26

Sample try / except

$ python3 trynum.py
Enter a number:42
Nice work
$ python3 trynum.py
Enter a number:forty-two
Not a number
$

rawstr = input('Enter a number:')
try:

ival = int(rawstr)
except:

ival = -1

if ival > 0 :
print('Nice work')

else:
print('Not a number')

27

Summary

• Comparison operators
== <= >= > < !=
• Indentation
• One-way decisions
• Two-way decisions:

if: and else:

• Nested decisions
• Multi-way decisions using

elif
• try / except to compensate

for errors

28

• Rewrite your pay computation to give the employee 1.5 times
the hourly rate for hours worked above 40 hours.

Enter Hours: 45
Enter Rate: 10

Pay: 475.0 475 = 40 * 10 + 5 * 15

Exercise

29

Exercise

• Rewrite your pay program using try and except so that your program handles non-
numeric input gracefully.

Enter Hours: 20
Enter Rate: nine
Error, please enter numeric input

Enter Hours: forty
Error, please enter numeric input

30

Acknowledgements / Contributions

• These slides are Copyright 2010- Charles R. Severance (www.dr-chuck.com)
of the University of Michigan School of Information and made available
under a Creative Commons Attribution 4.0 License. Please maintain this last
slide in all copies of the document to comply with the attribution
requirements of the license. If you make a change, feel free to add your
name and organization to the list of contributors on this page as you
republish the materials.

• Initial Development: Charles Severance, University of Michigan School of
Information

• Modified and enhanced by Erdogan Dogdu, Angelo State University, 2020

31

http://www.dr-chuck.com/

