Functions

Introduction to Program

Erdogan Dogdu

Computer Science Depa

Stored (and reused) steps

thing

print('Hello")
orint('Fun’

Program:
Output:

def thing():
print('Hello')
print('Fun’) Hello

print('zip') ZIip

Fun

We call these reusable pieces of code "functions”

Python functions

* There are two kinds of functions in Python:

* Built-in functions: Provided as part of Python

« print(), input(), type(), float(), int(), ...
» User-defined functions: We define ourselves and then use

e We treat the built-in function names as "new” reserved
words

* i.e., we avoid them as variable names

Function definition

* In Python a function is some reusable code that takes
arguments(s) as input, does some computation, and then
returns a result or results

« We de
 We cal

ine a function using the def reserved word

/invoke the function by using the function name,

parent

neses, and arguments in an expression

Argument

-

big = ('Hello world')

Assignmen!\
'wW

big = ('Hello world')
\ print(big)
Result
tiny = ('Hello world')

print(tiny)

Max function

>>> big = ('Hello world') A IS
>>> print(big) that we
w use. A function takes

some input and
produces an output.

max()
(a string) function ERule)

'‘Hello world' e

Max function

>>> big = ('Hello world')
>>> print(big)
W

def max(inp):
blah
blah

'Hello world' oy . .) inp.

(a string) olan

A IS
that we
use. A function takes
some input and
produces an output.

(a string)

ype conversions

(99) / 100)

* When you put an integer
and floating pointin an
expression, the integer is
implicitly converted to a

float

* You can control this with
the built-in functions int()

and float()

String Conversions «iseited

(sval)
'str'>
>>> print(sval + 1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

e YOou can also use iﬂt() and TypeError: cannot concatenate 'str'
and 'int'
float() to convert between ST IR

>>> (1val)
<class 'int'>

strings and integers

>>> print(ival + 1)

* You will get an error if the

string does not contain >>> nsv = ‘hello bob’
) >>> niv = (nsv)
numeric characters Traceback (most recent call last):

File "<stdin>", line 1, in <module>

. i ' ?
How do you avoid this error? ValueError: invalid literal for int()

Functions of our own ...

Building our own functions

* We create a new function using the def keyword followed
by optional parameters in parentheses

* We indent the body of the function

 This defines the function but does not execute the body of
the function,

def print lyrics():

jyet! print("I'm a lumberjack, and I'm okay.")
print('I sleep all night and I work all day.')

What is the output? print_Iyrics():

print("I'm a lumberjack, and I'm okay.")
print(‘l sleep all night and | work all day.')

X =5
print('Hello')

def print lyrics():
print("I'm a lumberjack, and I'm okay.")

print('I sleep all night and I work all day.')

Definitions and uses

* Once we have defined a function, we can call (or invoke) it
as many times as we like.

* This is the store and reuse pattern.

13

What is the output?

print(TI'm a lumberjack, and I'm okay.")
print('I sleep all night and I work all day.')

I'm a lumberjack, and I'm okay.
| sleep all night and | work all day.
7

Arguments

* An argument is a value we pass into the function as its input
when we call the function

« We use arguments so we can direct the function to do
different kinds of work when we call it at different times

* We put the arguments in parentheses after the name of the
function

big = ('Hello world')

Parameters

>>> def greet(lang):

if lang == 'es':
print('Hola')
. . . elif lang == 'fr':
e A Is a variable which we rint('Bonjour)
use in the function definition. Itis else:

print('Hello')

a "handle” that allows the code in
the function to access the
arguments for a particular function
invocation (call).

Return values

 Often a function will take its arguments, do some computation,
and return a value to be used as the value of the function call
in the calling expression. The return keyword is used for this.

def greet(): Hello Glenn
return "Hello" Hello Sally

print(, 'Glenn")
print (, "Sally")

Return value

>>> def greet(lang):

cee if lang ==

« A"fruitful” function is one that 2% return
«oe elif lang ==

produces a result (or return return

else:

va | ue) return

e The return statement ends the

>>> print(greet('en'), 'Glenn')
function execution and "sends AECECEE

. . >>> print(greet('es'), 'Sally')
back” the result of the function ESPEEIEEE:
>>> print(greet('fr'), 'Michael')
Bonjour Michael
>>>

Arguments, parameters, and results

Parameter

>>> big = ('Hello world')

>>> print(big)

def max(inp):
blah
blah

for x in inp:
blah

blah

Argument return 'v'

Multiple parameters / arguments

* We can define more than one addtwo(a, b):

in the function added = a + b
return added

X = addtwo (3, 5)
print(x)

* We simply add more arguments

when we call the function
8

« We match the number and order
of arguments and parameters

Void (non-fruitful) Functions

* When a function does not return a value, we call it a “void”
function

 Functions that return values are "fruitful” functions

* \/oid functions are “not fruitful”

21

To function or not to function ...

* Organize your code into “paragraphs” - capture a complete
thought and "name it"

* Don't repeat yourself - make it work once and then reuse it

* If something gets too long or complex, break it up into
ogical chunks and put those chunks in functions

* Make a library of common stuff that you do over and over -
perhaps share this with your friends ...

Summary

* Functions * Arguments

e Built-In Functions e Results (fruitful functions)
 Type conversion (int, float) Void (non-fruitful) functions
* String conversions * Why use functions?

e Parameters

Exercise

* Rewrite your pay computation with time-and-a-half for overtime
and create a function called computepay which takes two
parameters (hours and rate).

Enter Hours: 45
Enter Rate: 10

Pay: 475.0 475=40*10+5* 15

Acknowledgements / Contributions

OMOoM

* These slides are Copyright 2010- Charles R. Severance (www.dr-chuck.com)
of the University of Michigan School of Information and made available
under a Creative Commons Attribution 4.0 License. Please maintain this last
slide in all copies of the document to comply with the attribution
requirements of the license. If you make a change, feel free to add your
name and organization to the list of contributors on this page as you
republish the materials.

* Initial Development: Charles Severance, University of Michigan School of
Information

* Modified and enhanced by Erdogan Dogdu, Angelo State University, 2020

http://www.dr-chuck.com/

