
Loop and Iteration

Introduction to Programming and Problem Solving
Erdogan Dogdu
Computer Science Department / Angelo State University

Repeated Steps
Program:

n = 5
while n > 0 :

print(n)
n = n – 1

print('Blastoff!')
print(n)

Output:

5
4
3
2
1
Blastoff!
0

n > 0 ?
No

print('Blastoff')

Yes

n = 5

print(n)

n = n -1

Loops (repeated steps) have iteration variables that
change each time through a loop. Often these iteration

variables go through a sequence of numbers.

An Infinite Loop

n = 5
while n > 0 :

print('Lather')
print('Rinse')

print('Dry off!')

n > 0 ?
No

print('Dry off!')

Yes

n = 5

print('Lather')

print('Rinse')

What is wrong with this loop?

Another Loop

n = 0
while n > 0 :

print('Lather')
print('Rinse')

print('Dry off!')

n > 0 ?
No

print('Dry off!')

Yes

n = 0

print('Lather')

print('Rinse')

What is wrong with this loop?

Breaking out of a loop

• The break statement ends the current loop and jumps to the
statement immediately following the loop

• It is like a loop test that can happen anywhere in the body of
the loop > hello there

hello there
> finished
finished
> done
Done!

while True:
line = input('> ')
if line == 'done' :

break
print(line)

print('Done!')

True ?
No

print('Done')

Yes

....

...

while True:
line = input('> ')
if line == 'done' :

break
print(line)

print('Done!')

break

Breaking out of a loop

Finishing an iteration with continue

• The continue statement ends the current iteration and
jumps to the top of the loop and starts the next iteration

while True:
line = input('> ')
if line[0] == '#' :

continue
if line == 'done' :

break
print(line)

print('Done!')

> hello there
hello there
> # don't print this
> print this!
print this!
> done
Done!

True ?
No

print('Done')

Yes
while True:

line = raw_input('> ')
if line[0] == '#' :

continue
if line == 'done' :

break
print(line)

print('Done!') ...

....

continue

Continue

Indefinite loops

• While loops are called “indefinite loops” because they keep
going until a logical condition becomes False
• The loops we have seen so far are pretty easy to examine to

see if they will terminate or if they will be “infinite loops”
• Sometimes it is a little harder to be sure if a loop will

terminate

Definite loops

• Iterating over a set of items…

Definite loops

• Quite often we have a list of items of the lines in a file - effectively
a finite set of things
• We can write a loop to run the loop once for each of the items in

a set using the Python for construct
• These loops are called “definite loops” because they execute an

exact number of times
• We say that “definite loops iterate through the members of a set”

A simple definite loop

for i in [5, 4, 3, 2, 1]:
print(i)

print('Blastoff!')

5
4
3
2
1
Blastoff!

A definite loop with strings

friends = ['Joseph', 'Glenn', 'Sally']
for friend in friends :

print('Happy New Year:', friend)
print('Done!')

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally

Done!

A simple definite loop

for i in [5, 4, 3, 2, 1] :
print(i)

print('Blastoff!')

5
4
3
2
1
Blastoff!

Done?
Yes

print('Blast off!')

print(i)

No
Move i ahead

Definite loops (for loops) have explicit iteration variables
that change each time through a loop. These iteration

variables move through the sequence or set.

Looking at in...

• The iteration variable
“iterates” through the
sequence (ordered set)

• The block (body) of code is
executed once for each value
in the sequence

• The iteration variable moves
through all of the values in
the sequence

for i in [5, 4, 3, 2, 1] :
print(i)

Iteration variable

Five-element
sequence

Done?
Yes

print(i)

No
Move i ahead

for i in [5, 4, 3, 2, 1] :
print(i)

• The iteration variable
“iterates” through the
sequence (ordered set)

• The block (body) of code is
executed once for each value
in the sequence

• The iteration variable moves
through all of the values in
the sequence

Done?
Yes

print(i)

No
Move i ahead

for i in [5, 4, 3, 2, 1] :
print(i)

print(i)

i = 5

print(i)

i = 4

print(i)

i = 3

print(i)

i = 2

print(i)

i = 1

Loop idioms: what we do in loops

• Note: Even though these examples are simple, the patterns
apply to all kinds of loops

Making “smart” loops

• The trick is “knowing”
something about the
whole loop when you are
stuck writing code that
only sees one entry at a
time

Set some variables to
initial values

Look for something or
do something to each

entry separately,
updating a variable

for thing in data:

Look at the variables

Looping through a set

print('Before')
for thing in [9, 41, 12, 3, 74, 15]:

print(thing)
print('After')

$ python basicloop.py
Before
9
41
12
3
74
15
After

What is the largest number?

3

What is the largest number?

41 12 9 74 15

3

What is the largest number?

41 12 9 74 15

3

What is the largest number?

41 12 9 74 15

-1largest_so_far

3

What is the largest number?

3largest_so_far

What is the largest number?

41

41largest_so_far

What is the largest number?

12

41largest_so_far

What is the largest number?

9

41largest_so_far

What is the largest number?

74

74largest_so_far

What is the largest number?

15

74largest_so_far

3

What is the largest number?

41 12 9 74 15

74largest_so_far

Finding the largest value
largest_so_far = -1
print('Before', largest_so_far)
for the_num in [9, 41, 12, 3, 74, 15]:

if the_num > largest_so_far :
largest_so_far = the_num

print(largest_so_far, the_num)

print('After', largest_so_far)

$ python largest.py
Before -1
9 9
41 41
41 12
41 3
74 74
74 15
After 74

We make a variable that contains the largest value we have seen so far. If the current
number we are looking at is larger, it is the new largest value we have seen so far.

More loop patterns…

Counting in a loop

zork = 0
print('Before', zork)
for thing in [9, 41, 12, 3, 74, 15] :

zork = zork + 1
print(zork, thing)

print('After', zork)

$ python countloop.py
Before 0
1 9
2 41
3 12
4 3
5 74
6 15
After 6

To count how many times we execute a loop, we introduce a counter variable
that starts at 0 and we add one to it each time through the loop.

Summing in a loop

zork = 0
print('Before', zork)
for thing in [9, 41, 12, 3, 74, 15]:

zork = zork + thing
print(zork, thing)

print('After', zork)

$ python countloop.py
Before 0
9 9
50 41
62 12
65 3
139 74
154 15
After 154

To add up a value we encounter in a loop, we introduce a sum variable that
starts at 0 and we add the value to the sum each time through the loop.

Finding the average in a loop

count = 0
sum = 0
print('Before', count, sum)
for value in [9, 41, 12, 3, 74, 15]:

count = count + 1
sum = sum + value
print(count, sum, value)

print('After', count, sum, sum/count)

$ python averageloop.py
Before 0 0
1 9 9
2 50 41
3 62 12
4 65 3
5 139 74
6 154 15
After 6 154 25.666

An average just combines the counting and sum patterns and
divides when the loop is done.

Filtering in a loop

print('Before')
for value in [9, 41, 12, 3, 74, 15] :

if value > 20:
print('Large number',value)

print('After')

$ python search1.py
Before
Large number 41
Large number 74
After

We use an if statement in the loop to catch / filter the values we are
looking for.

Search using a boolean variable

found = False
print('Before', found)
for value in [9, 41, 12, 3, 74, 15]:

if value == 3 :
found = True

print(found, value)
print('After', found)

$ python search1.py
Before False
False 9
False 41
False 12
True 3
True 74
True 15
After True

If we just want to search and know if a value was found, we use a variable that
starts at False and is set to True as soon as we find what we are looking for.

How to find the smallest value

largest_so_far = -1
print('Before', largest_so_far)
for the_num in [9, 41, 12, 3, 74, 15]:

if the_num > largest_so_far:
largest_so_far = the_num

print(largest_so_far, the_num)

print('After', largest_so_far)

$ python largest.py
Before -1
9 9
41 41
41 12
41 3
74 74
74 15
After 74

How would we change this to make it find the smallest value in the list?

How to find the smallest value

smallest_so_far = -1
print('Before’, smallest_so_far)
for the_num in [9, 41, 12, 3, 74, 15]:

if the_num < smallest_so_far:
smallest_so_far = the_num

print(smallest_so_far, the_num)

print('After’, smallest_so_far)

We switched the variable name to smallest_so_far and switched the > to <

How to find the smallest value

smallest_so_far = -1
print('Before’, smallest_so_far)
for the_num in [9, 41, 12, 3, 74, 15]:

if the_num < smallest_so_far:
smallest_so_far = the_num

print(smallest_so_far, the_num)

print('After’, smallest_so_far)

We switched the variable name to smallest_so_far and switched the > to <

$ python smallbad.py
Before -1
-1 9
-1 41
-1 12
-1 3
-1 74
-1 15
After -1

How to find the smallest value

smallest = None
print('Before')
for value in [9, 41, 12, 3, 74, 15] :

if smallest is None :
smallest = value

elif value < smallest :
smallest = value

print(smallest, value)
print('After', smallest)

We still have a variable that is the smallest so far. The first time through the
loop smallest is None, so we take the first value to be the smallest.

$ python smallest.py
Before
9 9
9 41
9 12
3 3
3 74
3 15
After 3

is and is not operators

• Python has an is operator that
can be used in logical
expressions
• Implies “is the same as”
• Similar to, but stronger than ==
• is not also is a logical operator

smallest = None
print('Before')
for value in [3, 41, 12, 9, 74, 15]:

if smallest is None :
smallest = value

elif value < smallest :
smallest = value

print(smallest, value)

print('After', smallest)

Summary

• While loops (indefinite)
• Infinite loops
• Using break
• Using continue
• None constants and

variables

• For loops (definite)
• Iteration variables
• Loop idioms
• Largest or smallest

Acknowledgements / Contributions

• These slides are Copyright 2010- Charles R. Severance (www.dr-chuck.com)
of the University of Michigan School of Information and made available
under a Creative Commons Attribution 4.0 License. Please maintain this last
slide in all copies of the document to comply with the attribution
requirements of the license. If you make a change, feel free to add your
name and organization to the list of contributors on this page as you
republish the materials.

• Initial Development: Charles Severance, University of Michigan School of
Information

• Modified and enhanced by Erdogan Dogdu, Angelo State University, 2020

45

http://www.dr-chuck.com/

