

Language Technologies Institute

Multimodal Machine Learning

Lecture 1.1: Introduction Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Your Instructor and TAs This Semester (11-777)

Louis-Philippe Morency morency@cs.cmu.edu Course lecturer

Paul Liang pliang@andrew.cmu.edu TA & guest lecturer

Prakhar Gupta prakharg@cmu.edu TA

Martin Q. Ma <u>qianlim@cmu.edu</u> TA

Shikib Mehri amehri@andrew.cmu.edu TA

Torsten Wörtwein twoertwe@cs.cmu.edu TA

Lecture Objectives

- Introductions
- What is Multimodal?
 - Multimodal communicative behaviors
- A historical view of multimodal research
- Core technical challenges
 - Representation, translation, alignment, fusion and alignment
- Course syllabus and project assignments
 - Grades and course structure

What is Multimodal?

What is Multimodal?

Multiple modes, i.e., distinct "peaks" (local maxima) in the probability density function

What is Multimodal?

Multimodal Communicative Behaviors

What is Multimodal?

Modality

The way in which something happens or is experienced.

- *Modality* refers to a certain type of information and/or the representation format in which information is stored.
- Sensory modality: one of the primary forms of sensation, as vision or touch; channel of communication.

Medium ("middle")

A means or instrumentality for storing or communicating information; system of communication/transmission.

• *Medium* is the means whereby this information is delivered to the senses of the interpreter.

Multiple Communities and Modalities

Examples of Modalities

- □ Natural language (both spoken or written)
- □ Visual (from images or videos)
- □ Auditory (including voice, sounds and music)
- Haptics / touch
- □ Smell, taste and self-motion
- Physiological signals
 - Electrocardiogram (ECG), skin conductance
- Other modalities
 - Infrared images, depth images, fMRI

A Historical View

Prior Research on "Multimodal"

Four eras of multimodal research

- > The "behavioral" era (1970s until late 1980s)
- The "computational" era (late 1980s until 2000)
- The "interaction" era (2000 2010)
- The "deep learning" era (2010s until …)
 - Main focus of this course

Language and Gestures

David McNeill University of Chicago Center for Gesture and Speech Research

"For McNeill, gestures are in effect the speaker's thought in action, and integral components of speech, not merely accompaniments or additions."

The McGurk Effect (1976)

Hearing lips and seeing voices - Nature

The McGurk Effect (1976)

Hearing lips and seeing voices - Nature

The "Computational" Era(Late 1980s until 2000)

1) Audio-Visual Speech Recognition (AVSR)

The "Computational" Era (Late 1980s until 2000)

2) Multimodal/multisensory interfaces

Rosalind Picard

Affective Computing is

computing that relates to, arises from, or deliberately influences emotion or other affective phenomena.

TRIVIA: Rosalind Picard came from the same group (MIT, Sandy Pentland)

The "Computational" Era (Late 1980s until 2000)

3) Multimedia Computing

"The Informedia Digital Video Library Project automatically combines speech, image and natural language understanding to create a full-content searchable digital video library."

The "Interaction" Era (2000s)

1) Modeling Human Multimodal Interaction

AMI Project [2001-2006, IDIAP]

- 100+ hours of meeting recordings
- Fully synchronized audio-video
- Transcribed and annotated

CHIL Project [Alex Waibel]

- Computers in the Human Interaction Loop
- Multi-sensor multimodal processing
- Face-to-face interactions

□ TRIVIA: Samy Bengio started at IDIAP working on AMI project

The "Interaction" Era (2000s)

1) Modeling Human Multimodal Interaction

CALO Project [2003-2008, SRI]

- Cognitive Assistant that Learns and Organizes
- Personalized Assistant that Learns (PAL)
- Siri was a spinoff from this project

Social Signal Processing Network

SSP Project [2008-2011, IDIAP]

- Social Signal Processing
- First coined by Sandy Pentland in 2007
- Great dataset repository: <u>http://sspnet.eu/</u>

□ TRIVIA: LP's PhD research was partially funded by CALO ☺

The "deep learning" era (2010s until ...)

Representation learning (a.k.a. deep learning)

- Multimodal deep learning [ICML 2011]
- Multimodal Learning with Deep Boltzmann Machines [NIPS 2012]
- Visual attention: Show, Attend and Tell: Neural Image Caption Generation with Visual Attention [ICML 2015]

Key enablers for multimodal research:

- New large-scale multimodal datasets
- Faster computer and GPUS
- High-level visual features
- "Dimensional" linguistic features

Our course focuses on this era!

Core Technical Challenges

Core Challenges in "Deep" Multimodal ML

Multimodal Machine Learning: A Survey and Taxonomy

By Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency

https://arxiv.org/abs/1705.09406

✓ 5 core challenges
✓ 37 taxonomic classes
✓ 253 referenced citations

First Two Core Challenges

Core Challenge 1: Representation

Core Challenge 1: Early Examples

Language Technologies Institute

Core Challenge 1: Early Examples

Multimodal Vector Space Arithmetic

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.

Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.

Core Challenge 2: Alignment

Definition: Identify the direct relations between (sub)elements from two or more different modalities.

A Explicit Alignment

The goal is to directly find correspondences between elements of different modalities

Implicit Alignment

Uses internally latent alignment of modalities in order to better solve a different problem

Core Challenge 2: Explicit Alignment

Applications:

- Re-aligning asynchronous data

- Finding similar data across modalities (we can estimate the aligned cost)

- Event reconstruction from multiple sources

Core Challenge 2: Explicit Alignment

Core Challenge 2: Implicit Alignment

Karpathy et al., Deep Fragment Embeddings for Bidirectional Image Sentence Mapping, https://arxiv.org/pdf/1406.5679.pdf

Two More Core Challenges

Core Challenge 3 – Translation

Marsella et al., Virtual character performance from speech, SIGGRAPH/Eurographics Symposium on Computer Animation, 2013

Core Challenge 3: Translation

Definition: Process of changing data from one modality to another, where the translation relationship can often be open-ended or subjective.

36

Core Challenge 3: Translation - Example

a person jogs a few steps

A person steps forward then turns around and steps forwards again. A kneeling person raises their arms to the sides and stand up.

Ahuja, C., & Morency, L. P. (2019). Language2Pose: Natural Language Grounded Pose Forecasting. *Proceedings of 3DV Conference*

Core Challenge 4: Fusion

Core Challenge 4: Fusion

Definition: To join information from two or more modalities to perform a prediction task.

1) Early Fusion

2) Late Fusion

Core Challenge 4: Fusion

Definition: To join information from two or more modalities to perform a prediction task.

B Model-Based (Intermediate) Approaches

- 1) Deep neural networks
- 2) Kernel-based methods
- 3) Graphical models

Multiple kernel learning

Multi-View Hidden CRF

One Last Core Challenge

Core Challenge 5: Co-Learning

Definition: Transfer knowledge between modalities, including their representations and predictive models.

Core Challenge 5: Co-Learning

Pham et al., Found in Translation: Learning Robust Joint Representations by Cyclic Translations Between Modalities, https://arxiv.org/abs/1812.07809

Five Multimodal Core Challenges

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

Taxonomy of Multimodal Research

Representation

- Joint
 - o Neural networks
 - o Graphical models
 - o Sequential
- Coordinated
 - o Similarity
 - o Structured

Translation

- Example-based
 - o Retrieval
 - o Combination
- Model-based
 - o Grammar-based

- Encoder-decoder
- Online prediction

Alignment

- Explicit
 - o Unsupervised
 - Supervised
- Implicit
 - o Graphical models
 - Neural networks

Fusion

- Model agnostic
 - Early fusion
 - Late fusion
 - Hybrid fusion

- Model-based
 - o Kernel-based
 - o Graphical models
 - Neural networks

Co-learning

- Parallel data
 - Co-training
 - o Transfer learning
- Non-parallel data
 - Zero-shot learning
 - Concept grounding
 - Transfer learning
- Hybrid data
 - Bridging

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

Carnegie Mellon University

[https://arxiv.org/abs/1705.09406]

Real world tasks tackled by MMML

- Affect recognition
 - Emotion
 - Persuasion
 - Personality traits
- Media description
 - Image captioning
 - Video captioning
 - Visual Question Answering
- Event recognition
 - Action recognition
 - Segmentation
- Multimedia information retrieval
 - Content based/Cross-media

guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

boy is doing backflip on wakeboard."

(a) fight-person

(b) cartwheel

(a) get-out-car

(a) answer-phone

Course Syllabus

Three Course Learning Paradigms

Course lecture participation (15% of your grade)

Reading assignments (15% of your grade)

$$\begin{split} i_t &= \sigma \left(W_{xi} x_t + W_{hi} h_{t-1} + W_{ci} c_{t-1} + b_i \right) \\ f_t &= \sigma \left(W_{xf} x_t + W_{hf} h_{t-1} + W_{cf} c_{t-1} + b_f \right) \\ c_t &= f_t c_{t-1} + i_t \tanh \left(W_{xc} x_t + W_{hc} h_{t-1} + b_c \right) \\ o_t &= \sigma \left(W_{xo} x_t + W_{ho} h_{t-1} + W_{co} c_t + b_o \right) \\ h_t &= o_t \tanh(c_t) \end{split}$$

Course project assignments (70% of your grade)

Course Recommendations and Requirements

Ready to read about 10 papers this semester !

- Research papers as part of the weekly reading assignments
- Summarize each paper and participate in group discussions
- Already taken a machine learning course
 - Strongly recommended for students to have taken an introduction machine learning course
 - 10-401, 10-601, 10-701, 11-663, 11-441, 11-641 or 11-741
- Motivated to produce a high-quality course project
 - Projects are designed to enhance state-of-the-art algorithms
 - Three project assignments, to help scaffold the project tasks

$$\begin{split} & i_t = \sigma \left(W_{xi} x_t + W_{hi} h_{t-1} + W_{ci} c_{t-1} + b_i \right) \\ & f_t = \sigma \left(W_{xf} x_t + W_{hf} h_{t-1} + W_{cf} c_{t-1} + b_f \right) \\ & c_t = f_t c_{t-1} + i_t \tanh(W_{xc} x_t + W_{hc} h_{t-1} + b_c) \\ & o_t = \sigma \left(W_{xo} x_t + W_{ho} h_{t-1} + W_{co} c_t + b_o \right) \\ & h_t = o_t \tanh(c_t) \end{split}$$

Course Project Timeline

- Pre-proposal (Wednesday 9/16)
 - Define your dataset, research task and teammates
- First project assignment (due Friday Oct. 9)
 - Experiment with unimodal representations
 - Study prior work on your selected research topic
- Midterm project assignment (due Friday Nov. 12)
 - Implement and evaluate state-of-the-art model(s)
 - Discuss new multimodal model(s)
- Final project assignment (due Friday Dec. 11)
 - Implement and evaluate new multimodal model(s)
 - Discuss results and possible future directions

Course Project Guidelines

- Dataset should have at least two modalities:
 - Natural language and visual/images
- Teams of 3, 4 or 5 students
- The project should explore algorithmic novelty
- Possible venues for your final report:
 - NAACL 2021, ACL 2021, IJCAI 2021, ICML 2021
- We will discuss on Thursday about project ideas
- GPU resources available:
 - Amazon AWS and Google Cloud Platform

Process for Selecting your Course Project

- Thursday 9/3: Lecture describing available multimodal datasets and research topics
- Tuesday 9/8: Let us know your dataset preferences for the course project
- Thursday 9/10: During the later part of the lecture, we will have an interactive period to help with team formation. More details to come
- Wednesday 9/16: Pre-proposals are due. You should have selected your teammates, dataset and task

Equal Contribution by All Teammates!

- Each team will be required to create a GitHub repository which will be accessible by TAs
- Each report should include a description of the task from each teammate
- Please let us know soon if you have concerns about the participation levels of your teammates

Lecture Schedule

Classes	Tuesday Lectures	Thursday Lectures				
Week 1 9/1 & 9/3	Course introductionResearch and technical challengesCourse syllabus and requirements	 Multimodal applications and datasets Research tasks and datasets Team projects 				
Week 2 9/8 & 9/10	 Basic concepts: neural networks Language, visual and acoustic Loss functions and neural networks 	 Basic concep Gradients a Project preferences due on Tuesday 9/8 				
Week 3 9/15 & 9/17	 Visual unimodal representations Convolutional kernels and CNNs Residual network and skip connection 	 Language un Gated netv Backpropag Pre-proposals due on Wednesday 9/16 				
Week 4 9/22 & 9/24	 Multimodal representation learning Multimodal auto-encoders Multimodal joint representations 	 Coordinated representations Deep canonical correlation analysis Non-negative matrix factorization 				
Week 5 9/29 & 10/1	 Multimodal alignment Explicit - dynamic time warping Implicit - attention models 	 Structured representations Module networks Tree-based and stack models 				
Week 6 10/6 & 10/8	First project assignment (live working sess	ions instead of First assignment due on Friday 10/9				

Lecture Schedule

Classes	Tuesday Lectures	Thursday	Lectures
Week 7	Alignment and representation	Probabili	stic graphical models
10/13 & 10/15	 Multi-head attention 	Dynam	ic Bayesian networks
	 Multimodal transformers 	Couple	d and factor HMMs
Week 8	Discriminative graphical models	Neural G	enerative Models
10/20 & 10/22	 Conditional random fields 	 Variation 	onal auto-encoder
	 Continuous and fully-connected CRFs 	• Genera	tive adversarial networks
Week 9	Reinforcement learning	Multimo	dal RL
10/27 & 10/29	Markov decision process	• Deep (Q learning
	 Q learning and policy gradients 	Multin	nodal applications
Week 10	Fusion and co-learning	New rese	earch directions
11/3 & 11/5	 Multi-kernel learning and fusion 	 Recent 	approaches in multimodal ML
	 Few shot learning and co-learning 		
Week 11	Mid-term project assignment (live workin	g sessions	Midterres due en 11/10
11/10 & 11/12			Midterm due on 11/12.

Lecture Schedule

Classes	Tuesday Lectures	Thursday	/ Lectures
Week 12	Embodied Language Grounding	Multi-lin	gual representations
11/17 & 11/19	Connecting Language to Action	• Tenta	ative topic
	Guest lecture: Yonatan Bisk	• Gues	st lecture: To be confirmed
Week 13 11/24 & 11/26	Thanksgiving week (no lectures)		
Week 14	Bias and fairness	Learning	to connect text and images
12/1 & 12/3	Tentative topic	• Disco	ourse approaches, text & images
	Guest lecture: To be confirmed	• Gues	st lecture: Malihe Alikhani
Week 15 12/8 & 12/10	Final project assignment (live working ses	sions inste	Final due on 12/11.

Course Grades


```
\begin{split} i_t &= \sigma \left( W_{xi} x_t + W_{hi} h_{t-1} + W_{ci} c_{t-1} + b_i \right) \\ f_t &= \sigma \left( W_{xf} x_t + W_{hf} h_{t-1} + W_{cf} c_{t-1} + b_f \right) \\ c_t &= f_t c_{t-1} + i_t \tanh \left( W_{xc} x_t + W_{hc} h_{t-1} + b_c \right) \\ o_t &= \sigma \left( W_{xo} x_t + W_{ho} h_{t-1} + W_{co} c_t + b_o \right) \\ h_t &= o_t \tanh(c_t) \end{split}
```

- Lecture participation
 16%
- Reading assignments
 16%
- Project preferences/pre-proposal 3%
- First project assignment
 - Report and presentation 15%
- Mid-term project assignment
 - Report and presentation 20%
- Final project assignment
 - Report and presentation 30%

Lecture Participation – Highlight Forms

- Students should summarize lecture highlights
 - Each lecture is split in 3 segments (~30mins each)
 - One highlight statement for each segment
 - This is the main takeaway from this segment
 - Optionally, students can include related question
- Highlights submitted 42 hours after the lecture
 - Lecture can be watched live or asynchronously
- Questions will be summarized by TAs
 - Answers posted on Piazza

Reading Assignments

- 3 papers for each reading assignment
 - Each student will read only one paper!
 - Then you will create a short summary to help others
- Discussions with your study group
 - 9-10 students in each study group
 - Discuss together the 3 papers. Ask questions!
 - But you should also try to answer the questions
- Graded based on summary and discussion
 - I point for the summary and 1 point for the discussion

Canvas https://canvas.cmu.edu/courses/18106

- Main launching pad for everything related to the course
 - Zoom, Piazza, Gradescope
 - Recorded lectures on Panopto
- Course syllabus

Zoom & Panopto

zoom

Your current Time Zone is (GMT-04:00) Eastern Time (US and Canada). 🖉

Upcoming Meetings	Previous Meetings Cloud Recording	gs	Get Training 民
Start Time	Торіс	Meeting ID	
Tue, Sep 1 (Recurring) 3:20 PM	Multimodal Machine Learning	0	Join Invitation
Thu, Sep 3 (Recurring) 3:20 PM	Multimodal Machine Learning	0	Join Invitation
Tue, Sep 8 (Recurring) 3:20 PM	Multimodal Machine Learning	0	Join

- Live lectures (with Zoom)
- Recorded lectures (with Panopto)
- Links accessible from Canvas

Piazza https://piazza.com/cmu/fall2020/11777/home

ριαzza	11777-A 🔻	Q & A	Resources	Statistics	Manage Class		Louis-Philippe	e Morency
Carnegie Mellon University - F 11777-A: Multi Syllabus L	all 2020 modal	Ma	chine	Lea	rning			
Course Information Staff R	esources							_
Description			🖍 Edi	t An	nouncement	5	+	► Add
integrating and modeling multiple con acoustic and visual messages. With It recognition and more recently with lar and video captioning, this research fie multimodal researchers given the het often found between modalities. This mathematical concepts related to MM fusion, heterogeneous representation modeling. We will also review recent probabilistic models and computation current and upcoming challenges. Recommended preparation: This is a PhD and research master students at example (undergraduate) students of are advised to seek prior permission - to have taken an introduction machin 10-701, 11-633, 11-441, 11-641 or 11	municative moc- he initial researc groupse & vision old brings some course will teach ML including mu- learning and mu- appers describin al algorithms for graduate courses TITI, MLD, CSD CS or from prof- of the instructor. 741. Prior know	dalities, ir th on aud projects : unique cl e data and h fundam ultimodal ulti-strear g state-o MMML a e designe , HCII an essional It is requ e such as dedge of	ncluding linguis lio-visual speec such as image hallenges for d the continger ental alignment and m temporal of-the-art and discuss the ed primarily for d RI; others, for master programired for studen s 10-401, 10-60 deep learning i	r ncy r ns, ts 1/1, s	ick the Add button to	 Anr Qui Re; 	noun estio adino	nce on/
recommended. Students should have probability, statistic and linear algebra also strongly recommended. More details in the Syllabus documer	proper academ . Programming I t.	ic backgr knowledg	round in ge in Python is			• Prc	oject	re
General Information			/ Edi	t		• Co	urse	S
Time Tuesdays and Thursday, 3:20pm-4:40 Location Remote teaching – Zoom (see links in)pm					• Acc	cessi	ibl

Language Technologies Institute

Gradescope

← → C 🔒 gradescope.com/courses/147795

 Image: state of the state

O Extensions

INSTRUCTOR

Course Settings

Louis-Philippe Morency

DESCRIPTION

11777 Fall 2020

Multimodal machine learning (MMML) is a vibrant multi-

disciplinary research field which addresses some of the original goals of artificial intelligence by integrating and modeling multiple communicative modalities, including linguistic, acoustic and visual messages. With the initial research on audio-visual speech recognition and more recently with language vision projects such as image and video captioning, this research field brings some unique challenges for multimodal researchers given the heterogeneity of the data and the contingency often found between modalities. The course will present the fundamental mathematical concepts in machine learning and deep learning relevant to the five main challenges in multimodal machine learning: (1) multimodal representation learning, (2) translation mapping, (3) modality alignment, (4) multimodal fusion and (5) co-learning. These include, but not limited to, multimodal auto-encoder, deep canonical correlation analysis, multi-kernel learning, attention models and multimodal recurrent neural networks. We will also review recent papers describing state-of-the-art probabilistic models and computational algorithms for MMML and discuss the current and upcoming challenges. The course will discuss many of the recent applications of MMML including multimodal affect recognition, image and video captioning and crossmodal multimedia retrieval. This is a graduate course designed primarily for PhD and research master students at LTI, MLD, CSD, HCII and RI; others, for example (undergraduate) students of CS or from professional master programs, are advised to seek prior permission of the instructor. It is required for students to have taken an introduction machine learning course such as 10-401, 10-601, 10-701, 11-663, 11-441, 11-641 or 11-741. Prior knowledge of deep learning is recommended.

☆ 🕓

- Submit your project assignments
- View the comments from your graded reports
- Accessible from Canvas

External Course Website

11-777 MMML

logistics schedule homework project reports

MultiModal Machine Learning 11-777 • Fall 2020 • Carnegie Mellon University

Multimodal machine learning (MMML) is a vibrant multi-disciplinary research field which addresses some of the original goals of artificial intelligence by integrating and modeling multiple communicative modalities, including linguistic, acoustic, and visual messages. With the initial research on audio-visual speech recognition and more recently with language & vision projects such as image and video captioning, this research field brings some unique challenges for multimodal researchers given the heterogeneity of the data and the contingency often found between modalities. This course will teach fundamental mathematical concepts related to MMML including multimodal alignment and fusion, heterogeneous representation learning and multistream temporal modeling. We will also review recent papers describing state-of-the-art probabilistic models and computational algorithms for MMML and discuss the current and upcoming challenges.

The course will present the fundamental mathematical concepts in machine learning and deep learning relevant to the five main challenges in multimodal machine learning: (1) multimodal representation learning, (2) translation & mapping, (3) modality alignment, (4) multimodal fusion and (5) co-learning. These include, but not limited to, multimodal auto-encoder, deep canonical correlation analysis, multi-kernel learning, attention models and multimodal recurrent neural networks. The course will also discuss many of the recent applications of MMML including multimodal affect recognition, image and video captioning and cross-modal multimedia retrieval.

- Public link of recorded lectures (with some delays)
- List of reading assignments
- List of final project videos (this is optional)

https://cmu-multicomp-lab.github.io/mmml-course/fall2020/

Spring 2021 Edition of the MMML Course !

Yonatan Bisk ybisk@cs.cmu.edu

https://yonatanbisk.com/

More details about the Spring edition to come later!

Project Preferences – Due Tuesday 9/8

- Post your project preferences:
 - List of your ranked preferred projects
 - Use alphanumeric code of each dataset
 - Detailed dataset list in the "Lecture1.2-datasets" slides
 - Previous unimodal/multimodal experience
 - Available CPU / GPU resources
- For topics or datasets not in the list:
 - Include a description with links (for other students)

https://piazza.com/cmu/fall2020/11777/home

