

Language Technologies Institute

Multimodal Machine Learning

Lecture 2.2: Basic Concepts -Network Optimization

Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Lecture Objectives

- Learning neural networks
 - Optimization
 - Gradient computation
- Practical Deep Model Optimization
 - Adaptive Optimization Methods
 - Regularization
 - Co-adaptation
 - Multimodal Optimization

Learning model parameters

Language Technologies Institute

Learning model parameters

- We have our training data
 - $X = \{x_1, x_2, ..., x_n\}$ (e.g. images, videos, text etc.)
 - $Y = \{y_1, y_2, ..., y_n\}$ (labels)
 - Fixed
- We want to learn the W (weights and biases) that leads to best loss

 $\underset{W}{\operatorname{argmin}}[L(X, Y, W)]$

 The notation means find W for which L(X, Y, W) has the lowest value

Optimization

Optimizing a generic function

- We want to find a minimum of the loss function
- How do we do that?
 - Searching everywhere (global optimum) is computationally infeasible
 - We could search randomly from our starting point (mostly picked at random) and then refine the search region – impractical and not accurate
 - Instead we can follow the gradient

What is a gradient?

Geometrically

- Points in the direction of the greatest rate of increase of the function and its magnitude is the slope of the graph in that direction
- More formally in 1D

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

fastest increase

In higher dimensions

$$\frac{\partial f}{\partial x_i}(a_1, \dots, a_n) = \lim_{h \to 0} \frac{f(a_1, \dots, a_i + h, \dots, a_n) - f(a_1, \dots, a_i, \dots, a_n)}{h}$$

In multiple dimension, the gradient is the vector of (partial derivatives) and is called a Jacobian.

Carnegie Mellon University

Numeric gradient

• Can set *h* to a very low number and compute:

$$\frac{df(x)}{dx} = \frac{f(x+h) - f(x)}{h}$$

- Slow and just an approximation
 - Need to compute score once (or even twice for central limit) for each parameter
 - Sensitive to choice of h
- h needs to be chosen as well hyperparameter

Analytical gradient

- If we know the function and it is differentiable
 - Derivative/gradient is defined at every point in f
 - Sometimes use differentiable approximations
 - Some are locally differentiable
- Use Calculus (or Wikipedia)!
- Examples:

$$f(x) = \frac{1}{1 + e^{-x}}; \frac{df}{dx} = (1 - f(x))f(x)$$
$$f(x) = (x - y)^2; \frac{df}{dx} = 2(x - y)$$

Analytical gradient

If we know the function and it is differentiable

- Derivative/gradient is defined at every point in f
- Sometimes use differentiable approximations
- Some are locally differentiable

Which one should we use?

- Numeric
 - Slow
 - Approximate
- Analytical
 - More error prone to implement (need to get the gradient right)
 - Can use automated tools to help Theano, autograd, Matlab symbolic toolbox
- Have both, use analytical for speed but check using numeric
- Why you should understand gradient

Neural Networks gradient

Language Technologies Institute

Carnegie Mellon University

Gradient Computation

Chain rule:

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial h} \frac{\partial h}{\partial x}$$

Optimization: Gradient Computation

Multiple-path chain rule:

$$\frac{\partial y}{\partial x} = \sum_{j} \frac{\partial y}{\partial h_j} \frac{\partial h_j}{\partial x}$$

Optimization: Gradient Computation

Multiple-path chain rule:

$$\frac{\partial y}{\partial x_1} = \sum_j \frac{\partial y}{\partial h_j} \frac{\partial h_j}{\partial x_1}$$

$$\frac{\partial y}{\partial x_2} = \sum_j \frac{\partial y}{\partial h_j} \frac{\partial h_j}{\partial x_2}$$

$$\frac{\partial y}{\partial x_3} = \sum_j \frac{\partial y}{\partial h_j} \frac{\partial h_j}{\partial x_3}$$

$$y = f(h_1, h_2, h_3)$$

$$h_1$$

$$h_2$$

$$h_3$$

$$h_j = g(x)$$

$$x_1$$

$$x_2$$

$$x_3$$

Optimization: Gradient Computation

Vector representation:

Backpropagation Algorithm (efficient gradient)

Forward pass

 Following the graph topology, compute value of each unit

Backpropagation pass

- Initialize output gradient = 1
- Compute "local" Jacobian matrix using values from forward pass
- Use the chain rule:

```
Gradient = "local" Jacobian x
"backprop" gradient
```

Why is this rule important?

Computational Graph: Multi-layer Feedforward Network

Computational unit: $L = -logP(Y = y|\mathbf{z})$ (cross-entropy) **h** h = f(x; W) • Multiple inp • One output • Multiple input $\mathbf{z} = matmult(\mathbf{h}_2, \mathbf{W}_3)$ Z Vector/tensor Sigmoid unit: W_3 h_2 $\boldsymbol{h}_2 = f(\boldsymbol{h}_1; \boldsymbol{W}_2)$ $h_j = (1 + e^{-W_j x})^{-1}$ h h_1 $h_1 = f(x; W_1)$ Differentiable "unit" function! X (or close approximation to compute "local Jacobian)

Gradient descent

19

How to follow the gradient

- Many methods for optimization
 - Gradient Descent (actually the "simplest" one)
 - Newton methods (use Hessian second derivative)
 - Quasi-Newton (use approximate Hessian)
 - BFGS
 - LBFGS
 - Don't require learning rates (fewer hyperparameters)
 - But, do not work with stochastic and batch methods so rarely used to train modern Neural Networks
- All of them look at the gradient
 - Very few non gradient based optimization methods

Parameter Update Strategies

Gradient descent:

- Extensions: Stochastic ("batch")
 - with momentum
 - AdaGrad
 - RMSProp

 Compute gradient with respect to loss and keep updating weights till convergence

while not converged:

compute gradients

weights_grad = compute_gradient(loss_fun, data, weights)

perform parameter update

weights += - step_size * weights_grad

(optionally update step size)

Batch (stochastic) gradient descent

- Using all of data points might be tricky when computing a gradient
 - Uses lots of memory and slow to compute
- Instead use batch gradient descent
 - Take a subset of data when computing the gradient

Convex vs. non-convex functions and local minima

- Convex gradient descent will lead to a perfect solution (global optimum)
 - Logistic regression
 - Least squares models
 - Support vector machines
- Non-convex impossible to guarantee that the solution is the best – will lead to local-minima
 - Neural networks
 - Various graphical models

Potential issues

Problems that can occur?

- Getting stuck in local minima (global minimum is never found) (a)
- Getting stuck on flat plateaus of the error-plane (b)
- Oscillations in error rates (c)
- Learning rate is critical (d)

Some observations:

- Small steps are likely to lead to consistent but slow progress.
- Large steps can lead to better progress but are more risky.
- Note that eventually, for a large step size we will overshoot and make the loss worse.

Interpreting learning rates

Carnegie Mellon University

26

Optimization – Practical Guidelines

Language Technologies Institute

Carnegie Mellon University

Optimization – Practical Guidelines

- Adaptive Optimization Methods
- Regularization
- Co-adaptation
- Multimodal Optimization

General Idea: Let neurons who just started learning have huge learning rate.

Adaptive Learning Rate is an active area of research:

- Adadelta
- RMSProp

```
cache = decay_rate * cache + (1 - decay_rate) * dx**2
```

```
x += - learning_rate * dx / (np.sqrt(cache) + eps)
```

Adam

m = beta1*m + (1-beta1)*dx
v = beta2*v + (1-beta2)*(dx**2)
x += - learning_rate * m / (np.sqrt(v) + eps)

Comparison

Critical Points

Saddle Points

- Deep Learning Optimization:
 - Deep Learning problems in general have many local minimas
 - Many (not all) of them are actually almost as good as global minima due to parameter permutation
 - However it is NP-hard to even find a local minima
- Lots and lots of saddles in many deep learning problems.

Why Saddles are Bad

Carnegie Mellon University

Detecting Saddles

- One way to detect saddles:
 - Calculate Hessian at point *x*
 - If Hessian is indefinite you have a saddle for sure.
 - If Hessian is not indefinite you really can't tell.
- My loss isn't changing:
 - You are definitely close to a critical point
 - You may be in a saddle point
 - You may be in the local minima/maxima
 - One trick: quickly check the sorrounding
 - Best practical trick if Hessian is not indefinite.

Bad Saddle Points

https://arxiv.org/pdf/1602.05908.pdf

Example

Not the fault of learning rate or momentum

Example

Carnegie Mellon University

Bias-Variance

- Problem of bias and variance
 - Simple models are unlikely to find the solution to a hard problem, thus probability of finding the right model is low.

No longer SOT!

Bias-Variance

Problem of bias and variance

- Simple models are unlikely to find the solution to a hard problem, thus probability of finding the right model is low.
- Complex models find many solutions to a problem, thus probability of finding the right model is again low.

Optimization – Practical Guidelines

- Adaptive Optimization Methods
- Regularization
- Co-adaptation
- Multimodal Optimization

Regularization

- Parameter Regularization:
 - Adding prior to the network parameters
 - L^p Norms

Minimize: $Loss(x; \theta) + \propto ||\theta||$

Parameter Regularization

- Parameter Regularization:
 - L^1 (Lasso) and L^2 (Ridge) are the most famous norms used. Sometimes combined (Elastic)
 - Other norms are computationally ineffective.
- Maximum a posteriori (MAP) estimation:
 - Having priors one the model parameters
 - L^2 can be seen as a Gaussian prior on model parameters θ
 - A generalization of L² is called Tikhonov Regularization with Multivariate Gaussian prior on model parameters.
 - Assuming Correlation between parameters one can build a Mahalanobis variation of Tikhonov Regularization.

Structural Regularization

- Lots of models can learn everything.
- Go for simpler ones.
- Use task specific models:
 - CNNs
 - RecNNs
 - LSTMs
 - GRUs

Occam's razor

Optimization – Practical Guidelines

- Adaptive Optimization Methods
- Regularization
- Co-adaptation
- Multimodal Optimization

Example

- A neuron learns something that is not useful:
 - 1. Learn something useful
 - 2. Other neurons learn to mitigate it.

Carnegie Mellon Universi

Dropout

 Simply multiply the output of a hidden layer with a mask of 0s and 1s (Bernoulli)

Dropout

Forward step: multiply with a Bernoulli distribution per epoch, batch or sample point. Question: which one works better?

Backward step: just calculate the gradients same as before. Question: some neurons are out of the network, so how does this work?

All good? Nope

Multiply the weights by $1 - p_i$

Dropout

Stop co-adaptation + learn ensemble

Other variations

- Gaussian dropout: instead of multiplying with a Bernoulli random variable, multiply with a Gaussian with mean 1.
- Swapout: Allow skip-connections to happen

Optimization – Practical Guidelines

- Adaptive Optimization Methods
- Regularization
- Co-adaptation
- Multimodal Optimization

Multimodal Optimization

- Biggest Challenge:
 - Data from different sources
 - Different networks
- Example:

- Question Answering: LSTM(s) connected to a CNN
- Multimodal Sentiment: LSTM(s) fused with MLPs and 3D-CNNs
- CNNs work well with high decaying learning rate
- LSTMs work well with adaptive methods and normal SGD
- MLPs are very good with adaptive methods

Multimodal Optimization

- How to work with all of them?
- Pre-training is the most straight forward way:
 - Train each individual component of the model separately
 - Put together and fine tune
- Example: Multimodal Sentiment Analysis

Pre-training

Carnegie Mellon University

Pre-training

Carnegie Mellon University

Pre-training Tricks

- In the final stage (5), it is better to not use adaptive methods such as Adam.
 - Adam starts with huge momentum on all the networks parameters and can destroy the effects of pretraining.
 - Simple SGD mostly helpful.
- Initialization from other pre-trained models:
 - VGG for CNNs
 - Language models for RNNs
 - Layer by layer training for MLPs

