
1

Louis-Philippe Morency

Multimodal Machine Learning

Lecture 2.2: Basic Concepts -

Network Optimization

* Original version co-developed with Tadas Baltrusaitis

Lecture Objectives

▪ Learning neural networks

▪ Optimization

▪ Gradient computation

▪ Practical Deep Model Optimization

▪ Adaptive Optimization Methods

▪ Regularization

▪ Co-adaptation

▪ Multimodal Optimization

3

Learning model

parameters

Learning model parameters

▪ We have our training data

▪ X = {𝒙1, 𝒙2, … , 𝒙𝑛} (e.g. images, videos, text etc.)

▪ Y = {𝑦1, 𝑦2, … , 𝑦𝑛} (labels)

▪ Fixed

▪ We want to learn the W (weights and biases)

that leads to best loss

argmin
𝑊

[𝐿 X, Y,𝑊]

▪ The notation means find 𝑊 for which 𝐿 X, Y,𝑊
has the lowest value

5

Optimization

Optimizing a generic function

▪ We want to find a minimum of the loss function

▪ How do we do that?

▪ Searching everywhere (global optimum) is

computationally infeasible

▪ We could search randomly from our starting point

(mostly picked at random) and then refine the search

region – impractical and not accurate

▪ Instead we can follow the gradient

What is a gradient?

▪ Geometrically
▪ Points in the direction of the greatest rate of increase of the function and

its magnitude is the slope of the graph in that direction

▪ More formally in 1D

▪ In higher dimensions

➢ In multiple dimension, the gradient is the vector of (partial derivatives)

and is called a Jacobian.

𝑑𝑓 𝑥

𝑑𝑥
= lim

ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

𝜕𝑓

𝜕𝑥𝑖
(𝑎1, … , 𝑎𝑛) = lim

ℎ→0

𝑓 𝑎1, … , 𝑎𝑖 + ℎ,… , 𝑎𝑛 − 𝑓 𝑎1, … , 𝑎𝑖 , … , 𝑎𝑛
ℎ

Numeric gradient

▪ Can set h to a very low number and compute:

▪ Slow and just an approximation

▪ Need to compute score once (or even twice for

central limit) for each parameter

▪ Sensitive to choice of ℎ

▪ ℎ needs to be chosen as well - hyperparameter

𝑑𝑓 𝑥

𝑑𝑥
=
𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

Analytical gradient

▪ If we know the function and it is differentiable

▪ Derivative/gradient is defined at every point in f

▪ Sometimes use differentiable approximations

▪ Some are locally differentiable

▪ Use Calculus (or Wikipedia)!

▪ Examples:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
;
𝑑𝑓

𝑑𝑥
= (1 − 𝑓 𝑥)𝑓(𝑥)

𝑓 𝑥 = (𝑥 − 𝑦)2;
𝑑𝑓

𝑑𝑥
= 2(𝑥 − 𝑦)

Analytical gradient

▪ If we know the function and it is differentiable

▪ Derivative/gradient is defined at every point in f

▪ Sometimes use differentiable approximations

▪ Some are locally differentiable

▪ Use Calculus!

▪ Examples:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
;
𝑑𝑓

𝑑𝑥
= (1 − 𝑓 𝑥)𝑓(𝑥)

𝑓 𝑥 = (𝑥 − 𝑦)2;
𝑑𝑓

𝑑𝑥
= 2(𝑥 − 𝑦)

Which one should we use?

▪ Numeric

▪ Slow

▪ Approximate

▪ Analytical

▪ More error prone to implement (need to get the

gradient right)

▪ Can use automated tools to help – Theano,

autograd, Matlab symbolic toolbox

▪ Have both, use analytical for speed but check

using numeric

▪ Why you should understand gradient

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

12

Neural Networks

gradient

13

Gradient Computation

𝑥

ℎ

𝑦

𝜕𝑦

𝜕𝑥

Chain rule:

𝑦 = 𝑓(ℎ)

ℎ = 𝑔(𝑥)

=
𝜕𝑦

𝜕ℎ

𝜕ℎ

𝜕𝑥

14

Optimization: Gradient Computation

𝑥

ℎ2

𝑦

Multiple-path chain rule:

ℎ3ℎ1

𝜕𝑦

𝜕𝑥
𝑦 = 𝑓(ℎ1, ℎ2, ℎ3)

ℎ𝑗 = 𝑔(𝑥)

=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥

15

Optimization: Gradient Computation

𝑥2

ℎ2

𝑦

Multiple-path chain rule:

ℎ3ℎ1

𝑥3𝑥1

𝜕𝑦

𝜕𝑥1
=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥1

𝜕𝑦

𝜕𝑥2
=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥2

𝜕𝑦

𝜕𝑥3
=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥3

𝑦 = 𝑓(ℎ1, ℎ2, ℎ3)

ℎ𝑗 = 𝑔(𝒙)

16

Optimization: Gradient Computation

𝒙

𝒉

𝑦𝛻𝒙 𝑦 =
𝜕𝑦

𝜕𝑥1
,
𝜕𝑦

𝜕𝑥2
,
𝜕𝑦

𝜕𝑥3

Vector representation:

𝑦 = 𝑓(𝒉)

𝒉 = 𝑔(𝒙)
𝛻𝒙 𝑦 =

𝜕𝒉

𝜕𝒙

𝑇

𝛻𝒉 𝑦

Gradient

“local” Jacobian
“backprop” Gradient

(matrix of size ℎ × 𝑥 computed

using partial derivatives)

17

Backpropagation Algorithm (efficient gradient)

Forward pass

▪ Following the graph topology,

compute value of each unit

Backpropagation pass

▪ Initialize output gradient = 1

▪ Compute “local” Jacobian matrix

using values from forward pass

▪ Use the chain rule:

Gradient “local” Jacobian

“backprop” gradient

= x
𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)

𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)

▪ Why is this rule important?

18

Computational Graph: Multi-layer Feedforward Network

𝒉 = 𝑓(𝒙;𝑾)𝒉

Computational unit:

▪ Sigmoid unit:

𝒙
𝑾

* exp-1*

ℎ𝑗 = (1 + 𝑒−𝑊𝑗𝒙)−1

+1 1/x

𝒉

Differentiable “unit” function!
(or close approximation to compute “local Jacobian)

𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)

𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)

• Multiple input

• One output

• Vector/tensor

19

Gradient descent

How to follow the gradient

▪ Many methods for optimization

▪ Gradient Descent (actually the “simplest” one)

▪ Newton methods (use Hessian – second derivative)

▪ Quasi-Newton (use approximate Hessian)

▪ BFGS

▪ LBFGS

▪ Don’t require learning rates (fewer hyperparameters)

▪ But, do not work with stochastic and batch methods so

rarely used to train modern Neural Networks

▪ All of them look at the gradient

▪ Very few non gradient based optimization methods

21

Parameter Update Strategies

Gradient descent:

𝜃(𝑡+1) = 𝜃𝑡 − 𝜖𝑘𝛻𝜃𝐿

New model

parameters
Previous

parameters
Learning rate

at iteration k

Gradient of our loss function

𝜖𝑘 = 1 − 𝛼 𝜖0 + 𝛼𝜖𝜏
Learning rate

at iteration k
Decay Initial learning rate

Decay learning rate linearly until iteration 𝜏

▪ Stochastic (“batch”)

▪ with momentum

▪ AdaGrad

▪ RMSProp

Extensions:

Vanilla Gradient Descent

▪ Compute gradient with respect to loss and keep

updating weights till convergence

while not converged:

compute gradients

weights_grad = compute_gradient(loss_fun, data, weights)

perform parameter update

weights += - step_size * weights_grad

(optionally update step size)

Batch (stochastic) gradient descent

▪ Using all of data points might be tricky when

computing a gradient

▪ Uses lots of memory and slow to compute

▪ Instead use batch gradient descent

▪ Take a subset of data when computing the gradient

while not converged:

Shuffle data

data = randomize(data)

Split data into batches and update each batch individual

for data_batch in data:

weights_grad = backpropagation(loss_fun, data_batch , weights)

perform parameter update

weights += - step_size * weights_grad

Epoch

Iteration

Convex vs. non-convex functions and local minima

▪ Convex – gradient descent will

lead to a perfect solution (global

optimum)

▪ Logistic regression

▪ Least squares models

▪ Support vector machines

▪ Non-convex – impossible to

guarantee that the solution is the

best – will lead to local-minima

▪ Neural networks

▪ Various graphical models

25

Potential issues

▪ Problems that can occur?

▪ Getting stuck in local minima (global

minimum is never found) (a)

▪ Getting stuck on flat plateaus of the

error-plane (b)

▪ Oscillations in error rates (c)

▪ Learning rate is critical (d)

Flat plateau

Global minimumGlobal minimum

Local minimum

Local minimum

Some observations:
- Small steps are likely to lead to

consistent but slow progress.

- Large steps can lead to better progress

but are more risky.

- Note that eventually, for a large step size

we will overshoot and make the loss

worse.

26

Interpreting learning rates

27

Optimization –

Practical Guidelines

28

Optimization – Practical Guidelines

▪ Adaptive Optimization Methods

▪ Regularization

▪ Co-adaptation

▪ Multimodal Optimization

29

Adaptive Learning Rate

General Idea: Let neurons who just started learning have

huge learning rate.

Adaptive Learning Rate is an active area of research:

▪ Adadelta

▪ RMSProp
cache = decay_rate * cache + (1 - decay_rate) * dx**2

x += - learning_rate * dx / (np.sqrt(cache) + eps)

▪ Adam
m = beta1*m + (1-beta1)*dx

v = beta2*v + (1-beta2)*(dx**2)

x += - learning_rate * m / (np.sqrt(v) + eps)

30

Comparison

31

Critical Points

32

Saddle Points

▪ Deep Learning Optimization:

▪ Deep Learning problems in general have many local

minimas

▪ Many (not all) of them are actually almost as good as

global minima due to parameter permutation

▪ However it is NP-hard to even find a local minima

▪ Lots and lots of saddles in many deep learning

problems.

33

Why Saddles are Bad

34

Detecting Saddles

▪ One way to detect saddles:

▪ Calculate Hessian at point 𝑥

▪ If Hessian is indefinite you have a saddle for sure.

▪ If Hessian is not indefinite you really can’t tell.

▪ My loss isn’t changing:

▪ You are definitely close to a critical point

▪ You may be in a saddle point

▪ You may be in the local minima/maxima

▪ One trick: quickly check the sorrounding

▪ Best practical trick if Hessian is not indefinite.

35

Bad Saddle Points

https://arxiv.org/pdf/1602.05908.pdf

36

Example

Real
Our

Model

Not the fault of learning rate or momentum

Example

38

Bias-Variance

▪ Problem of bias and variance

▪ Simple models are unlikely to find the solution to a hard

problem, thus probability of finding the right model is low.

Real

No longer SOT!

39

Bias-Variance

▪ Problem of bias and variance

▪ Simple models are unlikely to find the solution to a hard

problem, thus probability of finding the right model is low.

▪ Complex models find many solutions to a problem, thus

probability of finding the right model is again low.

MLP is here!
Real

40

Optimization – Practical Guidelines

▪ Adaptive Optimization Methods

▪ Regularization

▪ Co-adaptation

▪ Multimodal Optimization

41

Regularization

▪ Parameter Regularization:
▪ Adding prior to the network parameters

▪ 𝐿𝑝 Norms

𝐿1 𝐿2 𝐿∞

Minimize: 𝐿𝑜𝑠𝑠 𝑥; 𝜃 + ԡ∝ ԡ𝜃

Parameter Regularization

▪ Parameter Regularization:
▪ 𝐿1(Lasso) and 𝐿2 (Ridge) are the most famous norms used. Sometimes

combined (Elastic)

▪ Other norms are computationally ineffective.

▪ Maximum a posteriori (MAP) estimation:

▪ Having priors one the model parameters

▪ 𝐿2 can be seen as a Gaussian prior on model parameters 𝜃

▪ A generalization of 𝐿2 is called Tikhonov Regularization with Multivariate

Gaussian prior on model parameters.

▪ Assuming Correlation between parameters one can build a Mahalanobis

variation of Tikhonov Regularization.

43

Structural Regularization

▪ Lots of models can learn everything.

▪ Go for simpler ones.

▪ Use task specific models:

▪ CNNs

▪ RecNNs

▪ LSTMs

▪ GRUs

Occam’s razor

44

Optimization – Practical Guidelines

▪ Adaptive Optimization Methods

▪ Regularization

▪ Co-adaptation

▪ Multimodal Optimization

45

Example

▪ A neuron learns something that is not useful:

1. Learn something useful

2. Other neurons learn to mitigate it.

Useless

neuron

Learning to fight

useless neuron
Actually learning

something

46

Dropout

▪ Simply multiply the output of a hidden layer with a mask of 0s and

1s (Bernoulli)

𝑥1

𝑥2

𝑥3

𝑏

Bernoulli

𝑝 = 0.2

𝑝 = 0.8

𝑦 = 0

𝑦

47

Dropout

Forward step: multiply with a Bernoulli distribution per epoch,

batch or sample point. Question: which one works better?

Backward step: just calculate the gradients same as before.

Question: some neurons are out of the network, so how does this

work?

All good?

Multiply the weights by 1 − 𝑝𝑖

Nope

48

Dropout

Stop co-adaptation + learn ensemble

49

Other variations

▪ Gaussian dropout: instead of multiplying with a Bernoulli

random variable, multiply with a Gaussian with mean 1.

▪ Swapout: Allow skip-connections to happen

50

Optimization – Practical Guidelines

▪ Adaptive Optimization Methods

▪ Regularization

▪ Co-adaptation

▪ Multimodal Optimization

Multimodal Optimization

▪ Biggest Challenge:
▪ Data from different sources

▪ Different networks

▪ Example:

▪ Question Answering: LSTM(s) connected to a CNN

▪ Multimodal Sentiment: LSTM(s) fused with MLPs and 3D-
CNNs

▪ CNNs work well with high decaying learning rate

▪ LSTMs work well with adaptive methods and normal
SGD

▪ MLPs are very good with adaptive methods

CNN

LSTM

M
L
P

Multimodal Optimization

▪ How to work with all of them?
▪ Pre-training is the most straight forward way:

▪ Train each individual component of the model separately

▪ Put together and fine tune

▪ Example: Multimodal Sentiment Analysis

Pre-training

CNN
Sentiment1.

LSTM
Sentiment2.

CNN
Visual

Representaion

3.

LSTM
Verbal

Representation

Pre-training

Sentiment
4.

Visual

Representaion

Verbal

Representation

M
L
P

CNN

LSTM

5. M
L
P Sentiment

Pre-training Tricks

▪ In the final stage (5), it is better to not use adaptive

methods such as Adam.

▪ Adam starts with huge momentum on all the networks

parameters and can destroy the effects of pretraining.

▪ Simple SGD mostly helpful.

▪ Initialization from other pre-trained models:

▪ VGG for CNNs

▪ Language models for RNNs

▪ Layer by layer training for MLPs

