A\ Language
;= Technologies
/) Institute

Lecture 2.2: Basic Concepts -
Network Optimization

Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

1

Lecture Objectives

= |earning neural networks
= Optimization
= Gradient computation
= Practical Deep Model Optimization
= Adaptive Optimization Methods
= Regularization
= Co-adaptation
= Multimodal Optimization

Language Technologies Institute

Learning model
parameters

Language Technologies Institute

Learning model parameters

= \WWe have our training data
= X ={xq,x,,..,X,} (€.9. IMages, videos, text etc.)

" Y ={y, Vs, .., ¥} (Iabels)
= Fixed

= We want to learn the W (weights and biases)
that leads to best loss
argmin[L(X,Y, W)]
w

= The notation means find W for which L(X,Y, W)
has the lowest value

Language Technologies Institute

Optimization

Language Technologies Institute

Optimizing a generic function

= \WWe want to find a minimum of the loss function

= How do we do that?

= Searching everywhere (global optimum) is
computationally infeasible

= \We could search randomly from our starting point
(mostly picked at random) and then refine the search
region — impractical and not accurate

* |nstead we can follow the gradient

Language Technologies Institute

What is a gradient?

= Geometrically

= Points in the direction of the greatest rate of increase of the function and
its magnitude is the slope of the graph in that direction

= More formally in 1D

Y@ fath) = () m
dx _ hoo h)

* In higher dimensions

of flaq,...,a; +h,..,a,) — f(aq, ...,a; ..., a,)

a—xi(al, ...,an) = }lllir(l) n

» In multiple dimension, the gradient is the vector of (partial derivatives)
and is called a Jacobian.

Language Technologies Institute

Numeric gradient

= Can set h to a very low number and compute:

df(x) f(x+h)—f(x)
dx h

= Slow and just an approximation

= Need to compute score once (or even twice for
central limit) for each parameter

= Sensitive to choice of h
* h needs to be chosen as well - hyperparameter

Language Technologies Institute

Analytical gradient

= |f we know the function and it is differentiable
= Derivative/gradient is defined at every point in f
= Sometimes use differentiable approximations
= Some are locally differentiable

= Use Calculus (or Wikipedia)!

= Examples:

__ Yd_ 4
FO) = 1= 7 = (L= FEDf)

d
FO) = (x = 3% & = 20— y)

Language Technologies Institute

Analytical gradient

= |f we know the function and it is differentiable
= Derivative/gradient is defined at every point in f
= Sometimes use differentiable approximations
= Some are locally differentiable

= Use Cal
= Example

f(

y = x|

f(

42 Y 2 4

Language Technologies Institute

Which one should we use?

= Numeric

= Slow

= Approximate
= Analytical

= More error prone to implement (need to get the
gradient right)

= Can use automated tools to help — Theano,
autograd, Matlab symbolic toolbox

* Have both, use analytical for speed but check
using numeric

= \Why you should understand gradient

Language Technologies Institute

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Neural Networks
gradient

Language Technologies Institute

Gradient Computation

Chain rule:

dy 0dydh
dx O0hox y) y=fh

Language Technologies Institute

Optimization: Gradient Computation

Multiple-path chain rule:

_ = - h,h,h
Y E 6hj0x y f(hy, by, h3)
J

b = g(x)

Language Technologies Institute

Optimization: Gradient Computation

Multiple-path chain rule:

d0x4 — 0h; 0x;
J

0x, 4L Oh;0x,
J

0 y = f(hy, hy, h3)

0x3 L Oh; 0x;
J

Language Technologies Institute

Optimization: Gradient Computation

Vector representation:

dy 0y 0y
= = h
X axl’axz'axJ y)y=fh)
Gradient
3 T
\ oh h) h=g(x)
V,y = a Vi v (
\
/ “backprop” Gradient

“local” Jacobian @

(matrix of size |h| X |x| computed
using partial derivatives)

Language Technologies Institute

Backpropagation Algorithm (efficient gradient)

L =—logP(Y =vy|z)
(cross-entropy)

Forward pass

= Following the graph topology,

compute value of each unit z = matmult(h,, W3)

Backpropagation pass
= |nitialize output gradient =1 @ hy, = f(hy; W5)

= Compute “local” Jacobian matrix
using values from forward pass

= Use the chain rule:

Gradient = “local” Jacobian X

“backprop” gradient
= Why is this rule important?

17

Language Technologies Institute

Computational Graph: Multi-layer Feedforward Network

Computational unit:

« Multiple input
h=f(x;W) | - One output

* Vector/tensor

L =—logP(Y =vy|z)
(cross-entropy)

z = matmult(h,, W3)

= Sigmoid unit:

gb = (14 i) (y) hy = f(hy; W)

e (hy) b, = f(a;Wy)
" IO-0-0-O-E 1

Differentiable “unit” function!

(or close approximation to compute “local Jacobian)

Language Technologies Institute

Gradient descent

Language Technologies Institute

How to follow the gradient

= Many methods for optimization
= Gradient Descent (actually the “simplest” one)
= Newton methods (use Hessian — second derivative)

= Quasi-Newton (use approximate Hessian)
= BFGS
= LBFGS
= Don'’t require learning rates (fewer hyperparameters)

= But, do not work with stochastic and batch methods so
rarely used to train modern Neural Networks

= All of them look at the gradient
= Very few non gradient based optimization methods

Language Technologies Institute

Parameter Update Strategies

Gradient descent:

/H (t+1) T/Qt — € VQL — Gradient of our loss function

New model Previous
parameters parameters

€Ex = (1 T/C()E\(‘) + (€ 1= Decay learning rate linearly until iteration ¢

Decay Initial learning rate

Extensions: = Stochastic (“batch”)
= with momentum
= AdaGrad
= RMSProp

Language Technologies Institute

Vanilla Gradient Descent

= Compute gradient with respect to loss and keep
updating weights till convergence

while not converged:
compute gradients
weights_grad = compute_gradient(loss_fun, data, weights)
perform parameter update
weights += - step_size * weights_grad

(optionally update step size)

Language Technologies Institute

Batch (stochastic) gradient descent

= Using all of data points might be tricky when
computing a gradient
= Uses lots of memory and slow to compute

* Instead use batch gradient descent
= Take a subset of data when computing the gradient

while not converged:
Shuffle data —
data = randomize(data)
Split data into batches and update each batch individual
for data_batch in data: S— E p o) Ch
weights_grad = backpropagation(loss_fun, data_batch , weights)

|tel’ati0n # perform parameter update
weights += - step_size * weights_grad]

Language Technologies Institute

Convex vs. non-convex functions and local minima

= Convex — gradient descent will
lead to a perfect solution (global
optimum)
= Logistic regression et
= Least squares models U
= Support vector machines
= Non-convex — impossible to TR
guarantee that the solution is the
best — will lead to local-minima

= Neural networks
= Various graphical models

Language Technologies Institute

Potential issues

= Problems that can occur?
= Getting stuck in local minima (global
minimum is never found) (a)

= Getting stuck on flat plateaus of the
error-plane (b)

lobal mini = Oscillations in error rates (c)
Global minimum | Global minimum - Learning rate is critical (d)

Wij wij

Local minimum Flat plateau

b o el & Some observations:
- Small steps are likely to lead to
consistent but slow progress.
A - Large steps can lead to better progress
but are more risky.
- Note that eventually, for a large step size
Local minimum we will overshoot and make the loss
worse.

Language Technologies Institute

Interpreting learning rates

loss

low learning rate

high learning rate

\‘

good learning rate

Language Technologies Institute

25

20

15

10

05}

00
0

20 40 60 80 100
Epoch P

Optimization —
Practical Guidelines

Language Technologies Institute

Optimization — Practical Guidelines

= Adaptive Optimization Methods
= Regularization

= Co-adaptation

= Multimodal Optimization

Language Technologies Institute

Adaptive Learning Rate

General Idea: Let neurons who just started learning have
huge learning rate.

Adaptive Learning Rate is an active area of research:
= Adadelta

= RMSProp

cache = decay_rate * cache + (1 - decay_rate) * dx**2
X += - learning_rate * dx / (np.sqrt(cache) + eps)
= Adam
m = betal*m + (1-betal)*dx
v = beta2*v + (1-beta2)*(dx**2)
X += - |learning_rate * m / (np.sqrt(v) + eps)

Language Technologies Institute

Comparison

SGD - = Momentum
Momentum E = NAG

= 7 5

= 4 &, —_—
) e
Adagrad "11’:’,’,’:':""/'//’","1'/',"',1',',""/',"’";,"0} Adadelta

T ARLIALTL T
Adadelta 4 ;,’:,,,,"'z',l’,":",’,',';',',';:',’,';:',',"lf,’;é — Rmsprop
e i,

Rmsprop | e '/"',

000
RN
S HAAIIAN;
SIS
il
9.9°0.9;
KA

Language Technologies Institute

Critical Points

local min local max saddle point

Language Technologies Institute

Saddle Points

= Deep Learning Optimization:
= Deep Learning problems in general have many local x

minimas
= Many (not all) of them are actually almost as good asv
global minima due to parameter permutation

= However it iIs NP-hard to even find a local minima x

= Lots and lots of saddles in many deep learning
problems.

Language Technologies Institute

Why Saddles are Bad

Language Technologies Institute

Detecting Saddles

= One way to detect saddles:
= Calculate Hessian at point x
= [f Hessian is indefinite you have a saddle for sure.
» |f Hessian is not indefinite you really can't tell.
= My loss isn’'t changing:
= You are definitely close to a critical point

= You may be in a saddle point
*= You may be in the local minima/maxima

= One trick: quickly check the sorrounding
= Best practical trick if Hessian is not indefinite.

Language Technologies Institute

Bad Saddle Points

https://arxiv.org/pdf/1602.05908.pdf

Language Technologies Institute

Example

Real

Not the fault of learning rate or momentum

Language Technologies Institute

Example

Loss

Training —
Test —

4 Validation —_

Validation best ©

VUL

LI T T t T T T T t T L T t T T T T] T T T t T
0 2000 4000 6000 8000 10000

Language Technologies Institute

Bias-Variance

= Problem of bias and variance

= Simple models are unlikely to find the solution to a hard
problem, thus probability of finding the right model is low.

T~ No longer SOT!

Language Technologies Institute

Bias-Variance

= Problem of bias and variance

= Simple models are unlikely to find the solution to a hard
problem, thus probability of finding the right model is low.

= Complex models find many solutions to a problem, thus
probability of finding the right model is again low.

— MLP is here!

Real

Language Technologies Institute

Optimization — Practical Guidelines

= Adaptive Optimization Methods
= Regularization

= Co-adaptation

= Multimodal Optimization

Language Technologies Institute

Regularization

= Parameter Regularization:

= Adding prior to the network parameters
= LP Norms

Lt L? L=
Minimize: Loss(x; 0) + «||@]|

Language Technologies Institute

Parameter Regularization

= Parameter Regularization:
= Ll(Lasso) and L? (Ridge) are the most famous norms used. Sometimes
combined (Elastic)
= QOther norms are computationally ineffective.

= Maximum a posteriori (MAP) estimation:
= Having priors one the model parameters
= L2 can be seen as a Gaussian prior on model parameters 6
= Ageneralization of L? is called Tikhonov Regularization with Multivariate

Gaussian prior on model parameters.
= Assuming Correlation between parameters one can build a Mahalanobis
variation of Tikhonov Regularization.

Language Technologies Institute

Structural Regularization

= Lots of models can learn everything. Occam’s razor
= (o for simpler ones. « -

= Use task specific models:
= CNNs
= RecNNs
= LSTMs
= GRUs

Language Technologies Institute

Optimization — Practical Guidelines

= Adaptive Optimization Methods
= Regularization

= Co-adaptation

= Multimodal Optimization

Language Technologies Institute

Example

= A neuron learns something that is not useful:
1. Learn something useful
2. Other neurons learn to mitigate it.

Useless
neuron

input layer

hidden layer™, hidden layer 2

Learning to fight, Actually learning
useless neuron something

Language Technologies Institute

Dropout

= Simply multiply the output of a hidden layer with a mask of Os and
1s (Bernoulli)

X1 3
X, p=02 y=0
X3 ‘ % —

p = 0.8 y

Language Technologies Institute

Dropout

;> Forward step: multiply with a Bernoulli distribution per epoch,
batch or sample point. Question: which one works better?

4: Backward step: just calculate the gradients same as before.
Question: some neurons are out of the network, so how does this
work?

All good? Nope

%— Multiply the weights by 1 — p;

Language Technologies Institute

(O
AN,

N

&v?’\\h

0%

Stop co-adaptation + learn ensemble

§
g\
TN

Dropout

Q
)
3
=
)
n
m
7y
2
b0
i)
o
c
L=
3
T
L)
o0
(1]
-
[o11]
e
L4y
—

Other variations

Gaussian dropout: instead of multiplying with a Bernoulli

random variable, multiply with a Gaussian with mean 1.

|
|
Input

a) |
X I
I
00000
000OO|
Q0000
000OO|
Q0000

————————————

Swapout: Allow skip-connections to happen

Language Technologies Institute

Output

[(b) FeedForward |j(c) ResNet | j(d) SkipForward
: F(X) :: Y =X+ F(X) : :Y=e®X+(1—e)©F(X)
IEEEEEHEEEEEIEEERE
IEEEEEIHGEEEE IR X0
00006 66000 '|00DODS
eeeee| 00006 (00060
I I
EEEEEIEEEEHIRUENER

L b oo o oo oo oo oo o e e omm owm o

. X + F(X)

Swapout
Y=0:10X+6:0F(X)

(IXOX:: NI A=)
CO0ed
0e0&0
e 00
Coeee

o

Optimization — Practical Guidelines

= Adaptive Optimization Methods
= Regularization

= Co-adaptation

= Multimodal Optimization

Language Technologies Institute

Multimodal Optimization

CNN

=

= Biggest Challenge:

= Data from different sources
= Different networks
= Example:

= Question Answering: LSTM(s) connected to a CNN

= Multimodal Sentiment: LSTM(s) fused with MLPs and 3D-
CNNs

= CNNs work well with high decaying learning rate

= LSTMs work well with adaptive methods and normal
SGD

= MLPs are very good with adaptive methods

Language Technologies Institute

Multimodal Optimization

= How to work with all of them?

= Pre-training is the most straight forward way:
= Train each individual component of the model separately
= Put together and fine tune

= Example: Multimodal Sentiment Analysis

Language Technologies Institute

Pre-training

1 CNN Sentiment
23 LSTM Sentiment
T | Representaion
3.
Verbal
Representation

Language Technologies Institute

Pre-training

Visual
Representaion
— |% — Sentiment
4 =
Verbal
Representation
’
- — =l — Sentiment
5. =
LSTM

Language Technologies Institute

Pre-training Tricks

= Inthe final stage (5), it is better to not use adaptive
methods such as Adam.

= Adam starts with huge momentum on all the networks
parameters and can destroy the effects of pretraining.

= Simple SGD mostly helpful.
= |nitialization from other pre-trained models:
= VGG for CNNs
= Language models for RNNs
= Layer by layer training for MLPs

Language Technologies Institute

