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Lecture Objectives

= |earning neural networks
= Optimization
= Gradient computation
= Practical Deep Model Optimization
= Adaptive Optimization Methods
= Regularization
= Co-adaptation
= Multimodal Optimization
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Learning model
parameters
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Learning model parameters

= \WWe have our training data
= X ={xq,x,,..,X,} (€.9. IMages, videos, text etc.)

" Y ={y, Vs, .., ¥} (Iabels)
= Fixed

= We want to learn the W (weights and biases)
that leads to best loss
argmin[L(X,Y, W)]
w

= The notation means find W for which L(X,Y, W)
has the lowest value
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Optimization

Language Technologies Institute




Optimizing a generic function

= \WWe want to find a minimum of the loss function

= How do we do that?

= Searching everywhere (global optimum) is
computationally infeasible

= \We could search randomly from our starting point
(mostly picked at random) and then refine the search
region — impractical and not accurate

* |nstead we can follow the gradient
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What is a gradient?

= Geometrically

= Points in the direction of the greatest rate of increase of the function and
its magnitude is the slope of the graph in that direction

= More formally in 1D

Y@ fath) = () m
dx _ hoo h )

* In higher dimensions

of flaq,...,a; +h,..,a,) — f(aq, ...,a; ..., a,)

a—xi(al, ...,an) = }lllir(l) n

» In multiple dimension, the gradient is the vector of (partial derivatives)
and is called a Jacobian.

Language Technologies Institute




Numeric gradient

= Can set h to a very low number and compute:

df(x)  f(x+h)—f(x)
dx h

= Slow and just an approximation

= Need to compute score once (or even twice for
central limit) for each parameter

= Sensitive to choice of h
* h needs to be chosen as well - hyperparameter
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Analytical gradient

= |f we know the function and it is differentiable
= Derivative/gradient is defined at every point in f
= Sometimes use differentiable approximations
= Some are locally differentiable

= Use Calculus (or Wikipedia)!

= Examples:

__ Yd_ 4
FO) = 1= 7 = (L= FEDf )

d
FO) = (x = 3% & = 20— y)
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Analytical gradient

= |f we know the function and it is differentiable
= Derivative/gradient is defined at every point in f
= Sometimes use differentiable approximations
= Some are locally differentiable

= Use Cal
= Example

f(

y = x|

f(

42 Y 2 4
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Which one should we use?

= Numeric

= Slow

= Approximate
= Analytical

= More error prone to implement (need to get the
gradient right)

= Can use automated tools to help — Theano,
autograd, Matlab symbolic toolbox

* Have both, use analytical for speed but check
using numeric

= \Why you should understand gradient
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https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Neural Networks
gradient
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Gradient Computation

Chain rule:

dy 0dydh
dx O0hox y) y=fh
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Optimization: Gradient Computation

Multiple-path chain rule:

_ = - h,h,h
Y E 6hj0x y f(hy, by, h3)
J

b = g(x)
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Optimization: Gradient Computation

Multiple-path chain rule:

d0x4 — 0h; 0x;
J

0x, 4L Oh;0x,
J

0 y = f(hy, hy, h3)

0x3 L Oh; 0x;
J
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Optimization: Gradient Computation

Vector representation:

dy 0y 0y
= = h
X axl’axz'axJ y)y=fh)
Gradient
3 T
\ oh h) h=g(x)
V,y = a Vi v (
\
/ “backprop” Gradient

“local” Jacobian @

(matrix of size |h| X |x| computed
using partial derivatives)

Language Technologies Institute



Backpropagation Algorithm (efficient gradient)

L =—logP(Y =vy|z)
(cross-entropy)

Forward pass

= Following the graph topology,

compute value of each unit z = matmult(h,, W3)

Backpropagation pass
= |nitialize output gradient =1 @ hy, = f(hy; W5)

= Compute “local” Jacobian matrix
using values from forward pass

= Use the chain rule:

Gradient = “local” Jacobian X

“backprop” gradient
= Why is this rule important?
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Computational Graph: Multi-layer Feedforward Network

Computational unit:

« Multiple input
h=f(x;W) | - One output

* Vector/tensor

L =—logP(Y =vy|z)
(cross-entropy)

z = matmult(h,, W3)

= Sigmoid unit:

gb = (14 i) (y) hy = f(hy; W)

e (hy) b, = f(a;Wy)
" IO-0-0-O-E 1

Differentiable “unit” function!

(or close approximation to compute “local Jacobian)
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Gradient descent
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How to follow the gradient

= Many methods for optimization
= Gradient Descent (actually the “simplest” one)
= Newton methods (use Hessian — second derivative)

= Quasi-Newton (use approximate Hessian)
= BFGS
= LBFGS
= Don'’t require learning rates (fewer hyperparameters)

= But, do not work with stochastic and batch methods so
rarely used to train modern Neural Networks

= All of them look at the gradient
= Very few non gradient based optimization methods
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Parameter Update Strategies

Gradient descent:

/H (t+1) T/Qt — € VQL — Gradient of our loss function

New model Previous
parameters parameters

€Ex = (1 T/C()E\(‘) + (€ 1= Decay learning rate linearly until iteration ¢

Decay Initial learning rate

Extensions: = Stochastic (“batch”)
= with momentum
= AdaGrad
= RMSProp
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Vanilla Gradient Descent

= Compute gradient with respect to loss and keep
updating weights till convergence

while not converged:
# compute gradients
weights_grad = compute_gradient(loss_fun, data, weights)
# perform parameter update
weights += - step_size * weights_grad

# (optionally update step size)

Language Technologies Institute



Batch (stochastic) gradient descent

= Using all of data points might be tricky when
computing a gradient
= Uses lots of memory and slow to compute

* Instead use batch gradient descent
= Take a subset of data when computing the gradient

while not converged:
# Shuffle data —
data = randomize(data)
# Split data into batches and update each batch individual
for data_batch in data: S— E p o) Ch
weights_grad = backpropagation(loss_fun, data_batch , weights)

|tel’ati0n # perform parameter update
weights += - step_size * weights_grad ]
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Convex vs. non-convex functions and local minima

= Convex — gradient descent will
lead to a perfect solution (global
optimum)
= Logistic regression et
= Least squares models U
= Support vector machines
= Non-convex — impossible to TR
guarantee that the solution is the
best — will lead to local-minima

= Neural networks
= Various graphical models
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Potential issues

= Problems that can occur?
= Getting stuck in local minima (global
minimum is never found) (a)

= Getting stuck on flat plateaus of the
error-plane (b)

lobal mini = Oscillations in error rates (c)
Global minimum | Global minimum - Learning rate is critical (d)

Wij wij

Local minimum Flat plateau

b o el & Some observations:
- Small steps are likely to lead to
consistent but slow progress.
A - Large steps can lead to better progress
but are more risky.
- Note that eventually, for a large step size
Local minimum we will overshoot and make the loss
worse.
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Interpreting learning rates

loss

low learning rate

high learning rate

\‘

good learning rate
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Optimization —
Practical Guidelines
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Optimization — Practical Guidelines

= Adaptive Optimization Methods
= Regularization

= Co-adaptation

=  Multimodal Optimization
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Adaptive Learning Rate

General Idea: Let neurons who just started learning have
huge learning rate.

Adaptive Learning Rate is an active area of research:
= Adadelta

= RMSProp

cache = decay_rate * cache + (1 - decay_rate) * dx**2
X += - learning_rate * dx / (np.sqrt(cache) + eps)
= Adam
m = betal*m + (1-betal)*dx
v = beta2*v + (1-beta2)*(dx**2)
X += - |learning_rate * m / (np.sqrt(v) + eps)
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Comparison

SGD - = Momentum
Momentum E = NAG
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Critical Points

local min local max saddle point
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Saddle Points

= Deep Learning Optimization:
= Deep Learning problems in general have many local x

minimas
= Many (not all) of them are actually almost as good asv
global minima due to parameter permutation

= However it iIs NP-hard to even find a local minima x

= Lots and lots of saddles in many deep learning
problems.
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Why Saddles are Bad
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Detecting Saddles

= One way to detect saddles:
= Calculate Hessian at point x
= [f Hessian is indefinite you have a saddle for sure.
» |f Hessian is not indefinite you really can't tell.
= My loss isn’'t changing:
= You are definitely close to a critical point

= You may be in a saddle point
*= You may be in the local minima/maxima

= One trick: quickly check the sorrounding
= Best practical trick if Hessian is not indefinite.
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Bad Saddle Points

https://arxiv.org/pdf/1602.05908.pdf
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Example

Real

Not the fault of learning rate or momentum
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Example

Loss

Training —
Test —

4 Validation —_

Validation best ©
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Bias-Variance

=  Problem of bias and variance

= Simple models are unlikely to find the solution to a hard
problem, thus probability of finding the right model is low.

T~ No longer SOT!
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Bias-Variance

=  Problem of bias and variance

= Simple models are unlikely to find the solution to a hard
problem, thus probability of finding the right model is low.

=  Complex models find many solutions to a problem, thus
probability of finding the right model is again low.

— MLP is here!

Real
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Optimization — Practical Guidelines

=  Adaptive Optimization Methods
= Regularization

= Co-adaptation

=  Multimodal Optimization
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Regularization

= Parameter Regularization:

= Adding prior to the network parameters
= LP Norms

Lt L? L=
Minimize: Loss(x; 0) + «||@]|
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Parameter Regularization

= Parameter Regularization:
= Ll(Lasso) and L? (Ridge) are the most famous norms used. Sometimes
combined (Elastic)
= QOther norms are computationally ineffective.

=  Maximum a posteriori (MAP) estimation:
= Having priors one the model parameters
= L2 can be seen as a Gaussian prior on model parameters 6
= Ageneralization of L? is called Tikhonov Regularization with Multivariate

Gaussian prior on model parameters.
= Assuming Correlation between parameters one can build a Mahalanobis
variation of Tikhonov Regularization.
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Structural Regularization

= Lots of models can learn everything. Occam’s razor
= (o for simpler ones.  « -

= Use task specific models:
= CNNs
= RecNNs
= LSTMs
= GRUs
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Optimization — Practical Guidelines

=  Adaptive Optimization Methods
= Regularization

= Co-adaptation

=  Multimodal Optimization

Language Technologies Institute



Example

= A neuron learns something that is not useful:
1. Learn something useful
2. Other neurons learn to mitigate it.

Useless
neuron

input layer

hidden layer™, hidden layer 2

Learning to fight, Actually learning
useless neuron something
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Dropout

= Simply multiply the output of a hidden layer with a mask of Os and
1s (Bernoulli)

X1 3
X, p=02 y=0
X3 ‘ % —

p = 0.8 y
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Dropout

;> Forward step: multiply with a Bernoulli distribution per epoch,
batch or sample point. Question: which one works better?

4: Backward step: just calculate the gradients same as before.
Question: some neurons are out of the network, so how does this
work?

All good? Nope

%— Multiply the weights by 1 — p;
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Other variations

Gaussian dropout: instead of multiplying with a Bernoulli

random variable, multiply with a Gaussian with mean 1.

|
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Swapout: Allow skip-connections to happen
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Output
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Optimization — Practical Guidelines

=  Adaptive Optimization Methods
= Regularization

= Co-adaptation

=  Multimodal Optimization

Language Technologies Institute



Multimodal Optimization

CNN

=

= Biggest Challenge:

= Data from different sources
= Different networks
= Example:

= Question Answering: LSTM(s) connected to a CNN

= Multimodal Sentiment: LSTM(s) fused with MLPs and 3D-
CNNs

= CNNs work well with high decaying learning rate

= LSTMs work well with adaptive methods and normal
SGD

= MLPs are very good with adaptive methods
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Multimodal Optimization

= How to work with all of them?

= Pre-training is the most straight forward way:
= Train each individual component of the model separately
= Put together and fine tune

= Example: Multimodal Sentiment Analysis
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Pre-training

1 CNN Sentiment
23 LSTM Sentiment
T | Representaion
3.
Verbal
Representation
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Pre-training

Visual
Representaion
— |% —  Sentiment
4 =
Verbal
Representation
’
- — =l — Sentiment
5. =
LSTM
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Pre-training Tricks

= Inthe final stage (5), it is better to not use adaptive
methods such as Adam.

= Adam starts with huge momentum on all the networks
parameters and can destroy the effects of pretraining.

= Simple SGD mostly helpful.
= |nitialization from other pre-trained models:
= VGG for CNNs
= Language models for RNNs
= Layer by layer training for MLPs
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