
1

Louis-Philippe Morency

Multimodal Machine Learning

Lecture 3.1: CNNs and Visual 

Representations

* Original version co-developed with Tadas Baltrusaitis



2

Administrative Stuff



Pre-proposals – Due tomorrow 9/16 

▪ Dataset and research problem

▪ Input modalities and multimodal challenges

▪ Initial research ideas

▪ Teammates and resources

Submit via Gradescope before 8PM ET

If you are still looking for teammates, you should 

still submit a pre-proposals. We will help you!



4

NEW Lecture Highlight Forms

https://forms.gle/ihEu5JVxFCmrCEEi7

New set of instructions…

Step 1: Write for each segment at least 2 

main discussed points

Write complete sentence (10+ words)

Number your main points: (1), (2), …

…but same deadline: Thursday 10:40am

Do not be vague or simply list keywords

https://forms.gle/ihEu5JVxFCmrCEEi7


5

NEW Lecture Highlight Forms

https://forms.gle/ihEu5JVxFCmrCEEi7

Step 2: Write your 2 personal 

takeaways from the whole lecture

Write complete sentence (10+ words)

Number your main points: (1), (2), …

Make it personal (“I liked…”, “I was surprised…”)

Two optional fields:

Any question about the lecture?

Any other suggestions?

1

2

This could help us with next edition of the course

IMPORTANT: Be sure you received an email after 

your submission

https://forms.gle/ihEu5JVxFCmrCEEi7


Upcoming Deadlines

Week 3 reading assignment was posted 

1. Wednesday 8pm: Select your paper

2. Friday 8pm: Post your summary

3. Monday 8pm: End of the reading assignment

Preproposal deadline: Wednesday 8pm



7

Louis-Philippe Morency

Multimodal Machine Learning

Lecture 3.1: CNNs and Visual 

Representations

* Original version co-developed with Tadas Baltrusaitis



Lecture Objectives

▪ Image representations
▪ Object descriptors 

▪ Convolutional Neural networks
▪ Convolution kernels

▪ Convolution neural layers

▪ Pooling layers

▪ Convolutional architectures
▪ VGGNet and residual networks

▪ Visualizing CNNs

▪ Region-based CNNs

▪ Sequential Modeling with convolutional networks

▪ Appendix: Tools for visual behavior analysis



9

Image 

Representations



How Would You Describe This Image?

…

?



Object-Based Visual Representation

“person” label

Appearance 

descriptor

❑ Age

❑ Expression

❑ Clothes

❑ …

F
e

a
tu

re
 v

e
c
to

r



Object Descriptors

How to represent and 

detect an object?

Image gradient

Many approaches over the years…

Edge detection

Histograms of 

Oriented Gradients Optical Flow



Object Descriptors

How to represent and 

detect an object?

Many approaches over the years…

Gabor filters

Horizontal

and vertical

gradients

Oriented 

gradients

Templates tested 

on the image

(i.e., convolution 

kernels)

Inspired by 

visual cortex



Convolution Kernels

∗ =

Convolution

kernels

Response maps



Object Descriptors

How to represent and 

detect an object?

Many approaches over the years…

Convolutional Neural Network (CNN)

More details about CNNs is coming…

And images are more than a list of objects!



Facial expression analysis

[OpenFace: an open source facial behavior analysis toolkit, T. Baltrušaitis et al., 2016]



Articulated Body Tracking: OpenPose

https://github.com/CMU-Perceptual-Computing-Lab/openpose

See appendix for list of available tools 

for automatic visual behavior analysis

https://github.com/CMU-Perceptual-Computing-Lab/openpose


18

Convolutional

Neural Networks



Why using Convolutional Neural Networks?

Goal: building more abstract, 

hierarchical visual representations

Input pixels

Edges/blobs

Parts

Objects

Key advantages:

1) Inspired from visual cortex

2) Encourages visual abstraction

3) Exploits translation invariance

4) Kernels/templates are learned

5) Fewer parameters than MLP



20

Translation Invariance

2 Data Points – Which one is up?

➢ MLP can easily learn this task 

(possibly with only 1 neuron!)

What happens if the face is slightly translated?

➢ The model should still be able to classify it

Conventional MLP models are not translation invariant!

➢ But CNNs are kernel-based, which helps with translation 

invariance and reduce number of parameters



21

Learned vs Predefined Kernels

Gabor filters

Predefined kernels Learned kernels

With CNNs, the kernel values are 

learned as model parameters

Convolutional Neural Network (CNN)



22

Convolution



Convolution: Mathematical Definition

A basic mathematical operation (that given two 

functions returns a function)

(𝑓 ∗ 𝑔) 𝑛 ≝ 

𝑚=−∞

∞

𝑓 𝑚 𝑔[𝑛 − 𝑚]

Two versions: continuous and discrete 

(we will focus on the latter)



Convolution in 1D – Example

(𝑓 ∗ 𝑔) 𝑛 ≝ 

𝑚=−∞

∞

𝑓 𝑚 𝑔[𝑛 − 𝑚]

𝑓 = … , 0,1,1,1,0,0,…

𝑔 = … , 0,1,−1,0…

𝑓 ∗ 𝑔 = [… , 0,1,0,0,−1,0,0,… ]

Input:

Kernel:

Convolution:



Convolution in practice

In CNN we only consider functions with limited 

domain (not from −∞ to ∞)

CNN considers fully defined (valid) version:

▪ We have a signal of length N

▪ Kernel of length K

▪ Output will be length N − K + 1

Example: 𝑓 = 1,2,1 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [1,−1]



Convolution in practice

If we want output to be different sizes, we can add padding 

to the signal:

▪ Just add 0s at the beginning and end

𝑓 = 0,0,1,2,1,0,0 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [0,1,1,−1,−1,0]

We can perform strided (aka, dilated) convolution: the filter 

jumps over pixels or samples

▪ Example with stride 2:

𝑓 = 0,0,1,2,1,0,0 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [0,1, −1,0]

When would it be a good idea?



Convolution in 2D – Example 

∗ =

Convolution

kernel

Response mapInput image



Sample CNN convolution

Great animated visualization of 2D convolution:

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/


29

Convolutional

Neural Layer



Convolution as a Fully-Connected Network

Output

Input

(response map)

(image)
200 × 200 image 

requires

40,000 × 𝑛 parameters

Not efficient!

(where 𝑛 is size of kernel)

Not translation invariant

Input: all pixels

Output: kernel responses

And it may learn different kernels 

for different pixel positions



Convolutional Neural Layer

Output

Input

(response map)

(image)

𝑤1 𝑤2 𝑤3

Example with 

1D kernel:

𝑦 = 𝑊𝑥

Weighted sum

𝑊𝑥

Input: all pixels

Output: kernel responses



Convolutional Neural Layer

Modification 1: Remove redundant links 

making the matrix W sparse

Output

Input

(response map)

(image)

𝑦 = 𝑊𝑥

Weighted sum

𝑊𝑥

𝑤1 𝑤2 𝑤3

Example with 

1D kernel:

Input: all pixels

Output: kernel responses



Convolutional Neural Layer

𝒘𝟏 𝒘𝟐 𝒘𝟑

Modification 2: share the weights in matrix W 

not to do redundant computation

Output

Input

(response map)

(image)

𝑦 = 𝑊𝑥

Weighted sum

𝑊𝑥

Input: all pixels

Output: kernel responses

Example with 

1D kernel:



Convolutional Neural Layer

𝒘𝟏 𝒘𝟐 𝒘𝟑

Modification 2: share the weights in matrix W 

not to do redundant computation

Example with 

1D kernel:𝑾 =

𝑤1 𝑤2 𝑤3
0 𝑤1 𝑤2
0 0 𝑤1

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
𝑤3 0 0
𝑤2 𝑤3 0
𝑤1 𝑤2 𝑤3

Output

Input

(response map)

(image)

𝑦 = 𝑊𝑥

Can be implemented efficiently on GPUs



Convolutional Neural Layer

𝒘𝟏 𝒘𝟐 𝒘𝟑Output

Input

(response map)

(image)

𝑦 = 𝜎(𝑊𝑥 + 𝑏)

Example with 

1D kernel:

with the activation function, and bias terms



Convolutional Neural Layer

Can expand this to 2D (or even 3D!)

Just need to make sure to link the right pixel with the right weight

Can expand to multi-channel 2D

e.g., for RGB images

Can expand to multiple kernels/filters

Output is not a single image anymore, but a tensor (a 3D matrix)

Input image Kernels Response maps



37

Convolutional 

Neural Network



Convolutional Neural Network

Input pixels

Edges/blobs

Parts

Objects

Multiple convolutional layers

Allows the network to 

learn combinations of 

sub-parts, to increase 

complexity

Combination of pixels

Combination of edges

Combination of edges

but how to encourage 

abstraction and summarization?

Answer: Pooling layers



Pooling Layer

Response map subsampling:

Allows summarization of the responses



Pooling Layer Gradient

1. Record during forward pass which pixel was picked and 

use the same in backward pass

2. Pick the maximum value from input using a smooth and 

differentiable approximation

𝑦 =
σ𝑖=1
𝑛 𝑥𝑖𝑒

𝛼𝑥𝑖

σ𝑖=1
𝑛 𝑒𝛼𝑥𝑖



41

Example of CNN 

Architectures



Common architectures

Start with a convolutional layer follow by non-linear 

activation and pooling

Repeat this several times

Ends with a fully connected (MLP) layer



VGGNet model

Used for object classification task

▪ 1000-way classification task

▪ 138 million parameters



44

VGGNet Convolution Kernels



45

VGGNet Response Maps (aka Activation Maps)

Convolution kernels (3x3)

Response Maps



Other architectures

LeNet – an early 5 layer architecture for 

handwritten digit recognition

DeepFace – Facebook’s face recognition CNN

VGGFace – For face recognition (from VGG folks)

AlexNet – Object Recognition

Already trained models for object recognition can 

be found online



47

Residual Networks

Adding residual connections

ResNet (He et al., 2015)

• Up to 152 layers!



48

Visualizing CNNs



49

Visualizing the Last CNN Layer: t-sne

Embed high dimensional data 

points (i.e. feature codes) so 

that pairwise distances are 

conserved in local 

neighborhoods. 

Alex Net



50

Deconvolution



51

Deconvolution



52

CAM: Class Activation Mapping [CVPR 2016]



53

Grad-CAM [ICCV 2017]



54

Region-based CNNs



55

Object recognition



56

Object Detection (and Segmentation)

Input image Detected Objects

One option: Sliding window

?



57

Object Detection (and Segmentation)

Input image Detected ObjectsRegion Proposals

A better option: Start by Identifying hundreds of region 

proposals and then apply our CNN object detector

How to efficiently identify region proposals?



58

Selective Search [Uijlings et al., IJCV 2013]

Image segmentation
(using superpixels)

And then merge 

similar regions

Create box 

region proposals



59

R-CNN [Girshick et al., CVPR 2014]

• Select ~2000 region proposals 

• Warp each region

• Apply CNN to each region

Fast R-CNN: Applies CNN only once, and then extracts regions

Time consuming!

Time consuming!

Faster R-CNN: Region selection on the Conv5 response map



60

Trade-off Between Speed and Accuracy

YOLO: You Only Look Once (CVPR 2016, 2017)

SSD: Single Shot MultiBox Detector (ECCV 2016) 



61

Mask R-CNN: Detection and Segmentation

(He et al., 2018)



62

Sequential Modeling 

with Convolutional 

Networks



63

Modeling Temporal and Sequential Data

How to represent a video sequence?

One option: Recurrent Neural Networks
(more about this on Thursday)



64

3D CNN

Input as a 3D tensor

(stacking video images)

3D CNN

First layer with 3D kernels



Time-Delay Neural Network

1D Convolution

Alexander Waibel, Phoneme Recognition Using Time-Delay Neural Networks, 

SP87-100, Meeting of the Institute of Electrical, Information and Communication 

Engineers (IEICE), December, 1987,Tokyo, Japan.



66

Temporal Convolution Network (TCN) [Lea et al., CVPR 2017]

Encoder

Decoder



67

Appendix: Tools for 

Automatic visual 

behavior analysis



Automatic analysis of visual behavior

▪ Face detection

▪ Face tracking

▪ Facial landmark detecion

▪ Head pose

▪ Eye gaze tracking

▪ Facial expression analysis

▪ Body pose tracking



Face Detection – Multi-Task CNN [SPL 2016]

Stage 1: candidate windows are produced through a fast Proposal Network 

Stage 2: refine these candidates through a Refinement Network

Stage 3: produces final bounding box and facial landmarks position



70

Existing software (face detection)

▪ Multi-Task CNN face detector
▪ https://kpzhang93.github.io/MTCNN_face_detection_alignment/inde

x.html

▪ OpenCV (Viola-Jones detector)

▪ dlib (HOG + SVM)
▪ http://dlib.net/

▪ Tree based model (accurate but very slow)
▪ http://www.ics.uci.edu/~xzhu/face/

▪ HeadHunter (accurate but slow)
▪ http://markusmathias.bitbucket.org/2014_eccv_face_detection/

▪ NPD
▪ http://www.cbsr.ia.ac.cn/users/scliao/projects/npdface/

https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html
http://dlib.net/
http://www.ics.uci.edu/~xzhu/face/
http://markusmathias.bitbucket.org/2014_eccv_face_detection/
http://www.cbsr.ia.ac.cn/users/scliao/projects/npdface/


3

10

17

27
20

Facial Landmarks: Constrained Local Neural Field

g4g4g4g4g3

g4g4g4g4g6

g4g4g4g4g2

g4g4g4g4g5
g4g4g4g4g1

g4g4g4g4g7
g4g4g4g4g4

x4x3x2x1

y4y2y1

x6

y6

X5

y5

x7

y7

y3

Region of 

Interest

Input image 

with detected face

Response 

map

Continuous Conditional Neural Field

Non-Uniform 

Joint Optimization

3

10

17

20

27



Existing software (facial landmarks)

▪ OpenFace: facial features
▪ https://github.com/TadasBaltrusaitis/OpenFace

▪ Chehra face tracking
▪ https://sites.google.com/site/chehrahome/

▪ Menpo project (good AAM, CLM learning tool)
▪ http://www.menpo.org/

▪ IntraFace: Facial attributes, facial expression analysis
▪ http://www.humansensing.cs.cmu.edu/intraface/

▪ OKAO Vision: Gaze estimation, facial expression
▪ http://www.omron.com/ecb/products/mobile/okao03.html 

(Commercial software)

▪ VisageSDK
▪ http://www.visagetechnologies.com/products/visagesdk/

▪ (Commercial software)

https://github.com/TadasBaltrusaitis/OpenFace
https://sites.google.com/site/chehrahome/
http://www.humansensing.cs.cmu.edu/intraface/
http://www.omron.com/r_d/coretech/vision/okao.html
http://www.visagetechnologies.com/products/visagesdk/


Facial expression analysis

[OpenFace: an open source facial behavior analysis toolkit, T. Baltrušaitis et al., 2016]



74

Existing Software (expression analysis)

▪ OpenFace: Action Units
▪ https://github.com/TadasBaltrusaitis/OpenFace

▪ Shore: facial tracking, smile detection, age and gender 
detection
▪ http://www.iis.fraunhofer.de/en/bf/bsy/fue/isyst/detektion/

▪ FACET/CERT (Emotient API): Facial expression recognition
▪ http://imotionsglobal.com/software/add-on-modules/attention-tool-

facet-module-facial-action-coding-system-facs/ (Commercial 
software)

▪ Affdex
▪ http://www.affectiva.com/solutions/apis-sdks/

▪ (commercial software)

https://github.com/TadasBaltrusaitis/OpenFace
http://www.iis.fraunhofer.de/en/bf/bsy/fue/isyst/detektion/
http://imotionsglobal.com/software/add-on-modules/attention-tool-facet-module-facial-action-coding-system-facs/
http://www.affectiva.com/solutions/apis-sdks/


Gaze Estimation – Eye, Head and Body

Image from Hachisu et al (2018). FaceLooks: A Smart Headband for Signaling Face-to-Face Behavior. Sensors.



76

Existing Software (head gaze)

▪ OpenFace

▪ https://github.com/TadasBaltrusaitis/OpenFace

▪ Chehra face tracking

▪ https://sites.google.com/site/chehrahome/

▪ Watson: head pose estimation

▪ http://sourceforge.net/projects/watson/

▪ Random forests

▪ http://www.vision.ee.ethz.ch/~gfanelli/head_pose/head_forest.html

▪ (requires a Kinect)

▪ IntraFace
▪ http://www.humansensing.cs.cmu.edu/intraface/

https://github.com/TadasBaltrusaitis/OpenFace
https://sites.google.com/site/chehrahome/
http://sourceforge.net/projects/watson/
http://www.vision.ee.ethz.ch/~gfanelli/head_pose/head_forest.html
http://www.humansensing.cs.cmu.edu/intraface/


77

Existing Software (eye gaze)

▪ OpenFace: gaze from a webcam
▪ https://github.com/TadasBaltrusaitis/OpenFace

▪ EyeAPI: eye pupil detection
▪ http://staff.science.uva.nl/~rvalenti/

▪ EyeTab
▪ https://www.cl.cam.ac.uk/research/rainbow/projects/eyet

ab/

▪ OKAO Vision: Gaze estimation, facial expression
▪ http://www.omron.com/ecb/products/mobile/okao03.html 

(Commercial software)

https://github.com/TadasBaltrusaitis/OpenFace
http://staff.science.uva.nl/~rvalenti/
https://www.cl.cam.ac.uk/research/rainbow/projects/eyetab/
http://www.omron.com/r_d/coretech/vision/okao.html


Articulated Body Tracking: OpenPose



79

Existing Software (body tracking)

▪ OpenPose

▪ https://github.com/CMU-Perceptual-Computing-

Lab/openpose

▪ Microsoft Kinect

▪ http://www.microsoft.com/en-us/kinectforwindows/

▪ OpenNI

▪ http://openni.org/

▪ Convolutional Pose Machines

▪ https://github.com/shihenw/convolutional-pose-machines-

release

https://github.com/CMU-Perceptual-Computing-Lab/openpose
http://www.microsoft.com/en-us/kinectforwindows/
http://openni.org/
https://github.com/shihenw/convolutional-pose-machines-release


Visual Descriptors

Image gradient Edge detection

SIFT descriptors

Optical Flow

Histograms of Oriented Gradients

Gabor Jets



81

Existing Software (visual descriptors)

▪ OpenCV: optical flow, gradient, Haar filters…

▪ SIFT descriptors

▪ http://blogs.oregonstate.edu/hess/code/sift/

▪ dlib – HoG

▪ http://dlib.net/

▪ OpenFace: Aligned HoG for faces

▪ https://github.com/TadasBaltrusaitis/CLM-framework

http://blogs.oregonstate.edu/hess/code/sift/
http://dlib.net/
https://github.com/TadasBaltrusaitis/CLM-framework

