

Language Technologies Institute

Multimodal Machine Learning

Lecture 3.2: Language Representations and RNNs Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Administrative Stuff

Language Technologies Institute

Piazza Live Q&A – Reminder

Lecture Highlights - Reminder

https://forms.gle/W1VJDWaitEumn4XSA

Last 20+ mins - Su *	immary - At least two points (full sentences , numbered) $_{\rm 2 points}$
Your answer	
Your personal take numbered) *	eaways from the lecture - Two takeaways (full sentences, 2 points
Your answer	
(Optional) Any qu	estion? Please include slide number(s).
Your answer	
(Optional) Sugges	tions and Comments
Your answer	
copy of your respon	ses will be emailed to Imorency@andrew.cmu.edu.
Submit	
	rough Google Forms. orm was created inside of Carnegie Mellon University. <u>Beport Abuse</u>
	Google Forms

New set of instructions...

...but same deadline: Saturday 10:40am

IMPORTANT: Be sure you received an email after your submission (or revisit the form and your answers should be there).

Reading Assignments – Reminder

Week 3 reading assignment was posted

- 1. Friday 8pm: Post your summary
- 2. Monday 8pm: End of the reading assignment

Be sure to post your discussion comments, questions and answers before Monday 8pm!

Start the discussion early ©

Late submissions will be penalized

Grades on Canvas

Fall 2020	Grades for Test Student	🖨 Print Grades			
Piazza	Arrange By	_			
Gradescope	Due Date 🗸 Appl	ly			
Panopto Recordings					
Grades		otatas score out of			
	Lecture 2.1 - Highlight Form	- 1			
	Lecture 2.2 - Highlight Form	- 1			
	Project Assignments	N/A 0.00 / 0.00	N/A 0.00 / 0.00		
	Total	N/A 0.00 / 0.0	0		
	Total: N/A				
	Show All Details				
	Course assignments are not weighted.				
	Calculate based only on graded assignments				

Grades are now on CMU Canvas for:

Lecture highlightsReading assignments

Grades for the project assignments will be on gradescope

Language Technologies Institute

Multimodal Machine Learning

Lecture 3.2: Language Representations and RNNs Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Lecture Objectives

- Word representations
 - Distributional hypothesis
 - Learning neural representations
- Sentence representations and sequence modeling
 - Recurrent neural networks
 - Gated recurrent neural networks
 - Backpropagation through time
- Syntax and language structure
 - Phrase-structure and dependency grammars
 - Recursive neural network
 - Tree-based RNN, Stack LSTM

Word Representations

What is the meaning of "bardiwac"?

- He handed her her glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac.
- The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.
- ⇒ bardiwac is a heavy red alcoholic beverage made from grapes

How to learn (word) features/representations?

- Distribution hypothesis: Approximate the word meaning by its surrounding words
 - Words used in a similar context will lie close together

Instead of capturing co-occurrence counts directly, predict surrounding words of every word

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

Geometric interpretation

- row vector X_{dog} describes usage of word *dog* in the corpus
- can be seen as coordinates of point in *n*-dimensional Euclidean space Rⁿ

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

co-occurrence matrix M

Distance and similarity

use

- illustrated for two dimensions: get and use: x_{dog} = (115, 10)
- similarity = spatial proximity (Euclidean distance)
- location depends on frequency of noun $(f_{dog} \approx 2.7 \cdot f_{cat})$

Two dimensions of English V-Obj DSM

Angle and similarity

- direction more important than location
- normalise "length"
 ||x_{dog}|| of vector
- or use angle α as distance measure

Two dimensions of English V-Obj DSM

Language Technologies Institute

How to learn (word) features/representations?

How to use these word representations

If we would have a vocabulary of 100 000 words:

Vector space models of words

While learning these word representations, we are actually building a vector space in which all words reside with certain relationships between them

This vector space allows for algebraic operations:

Vec(king) – vec(man) + vec(woman) ≈ vec(queen)

Vector space models of words: semantic relationships

Trained on the Google news corpus with over 300 billion words

Word Representation Resources

Word-level representations: Word2Vec (Google, 2013) https://code.google.com/archive/p/word2vec/ Glove (Stanford, 2014) https://nlp.stanford.edu/projects/glove/ FastText (Facebook, 2017) https://fasttext.cc/ Sentence-level representations: ELMO (Allen Institute for AI, 2018) https://allennlp.org/elmo BERT (Google, 2018) https://github.com/google-research/bert RoBERTa (Facebook, 2019) https://github.com/pytorch/fairseq

Word representations are contextualized using all the words in the sentence.

More details later in this lecture and during Week 5

Lexicon-based Word Representation

LIWC: Language Inquiry & Word Count

Manually created dictionaries for different topics and categories:

- Function words: *pronouns, preposition, negation...*
- Affect words: positive, negative emotions
- Social words: family, friends, referents
- Cognitive processes: Insight, cause, ...
- Perceptual processes: Seeing, hearing, feeling
- Biological processes: *Body, health/illness,...*
- Drives and needs: Affiliation, achievement, ...
- Time orientation: past, present, future
- Relativity: *motion, space, time*
- Personal concerns: work, leisure, money, religion
- Informal speech: swear words, fillers, assent,...

LIWC can encode individual words or full sentences.

https://liwc.wpengine.com/

Commercial software. Contact TAs in advance if you would like to use it.

Other Lexicon Resources

Lexicons

- General Inquirer (Stone et al., 1966)
- OpinionFinder lexicon (Wiebe & Riloff, 2005)
- SentiWordNet (Esuli & Sebastiani, 2006)
- LIWC (Pennebaker)

Other Tools

- LightSIDE
- Stanford NLP toolbox
- IBM Watson Tone Analyzer
- Google Cloud Natural Language
- Microsoft Azure Text Analytics

Sentence Modeling

Language Technologies Institute

Sentence Modeling: Sequence Label Prediction

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

Sentiment ? (positive or negative)

Sentence Modeling: Sequence Prediction

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

Part-of-speech ? (noun, verb,...)

Sentence Modeling: Sequence Representation

Sentence Modeling: Language Model

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

Language Model

Language Model Application: Language Generation

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

Example: Image captioning

28

Language Model Application: Speech Recognition

arg max P(wordsequence | acoustics) = wordsequence

$$\underset{wordsequence}{\operatorname{arg\,max}} \frac{P(acoustics \mid wordsequence) \times P(wordsequence)}{P(acoustics)}$$

 $arg \max P(acoustics | wordsequence) \times P(wordsequence)$

wordsequence

Challenges in Sequence Modeling

- Part-of-speech ? (noun, verb,...)
- Sentiment ? (positive or negative)
- Language Model
- Sequence representation

Main Challenges:

- Sequences of variable lengths (e.g., sentences)
- Keep the number of parameters at a minimum
- Take advantage of possible redundancy

Language Technologies Institute

Recurrent Neural Networks

Language Technologies Institute

Recurrent Neural Network

Feedforward Neural Network

Recurrent Neural Networks

Recurrent Neural Networks - Unrolling

Same model parameters are used for all time parts.

Backpropagation Through Time

$$L = \sum_{t} L^{(t)} = -\sum_{t} log P(Y = y^{(t)} | z^{(t)})$$

$$(L^{(t)} \text{ or } L^{(t)}) \frac{\partial L}{\partial L^{(t)}} = 1$$

$$(T^{(t)} \text{ or } L^{(t)}) \frac{\partial L}{\partial L^{(t)}} = 1$$

$$(T^{(t)} \text{ or } Z^{(t)}) \frac{\partial L}{\partial L^{(t)}} = \frac{\partial L}{\partial z_{i}^{(t)}} = \frac{\partial L}{\partial L^{(t)}} \frac{\partial L^{(t)}}{\partial z_{i}^{(t)}} = sigmoid(z_{i}^{t}) - \mathbf{1}_{i,y^{(t)}}$$

$$(T^{(t)} P_{h^{(t)}}L = P_{z^{(t)}}L \frac{\partial z^{(t)}}{\partial h^{(t)}} = P_{z^{(t)}}LV$$

$$(T^{(t)} P_{h^{(t)}}L = P_{z^{(t)}}L \frac{\partial o^{(t)}}{\partial h^{(t)}} + P_{z^{(t+1)}}L \frac{\partial h^{(t+1)}}{\partial h^{(t)}}$$

 τ)

 $\mathbf{z}^{(\tau)}$

 $h^{(au)}$

Backpropagation Through Time

$$L = \sum_{t} L^{(t)} = -\sum_{t} log P(Y = y^{(t)} | \mathbf{z}^{(t)})$$

Gradient = "backprop" gradient
x "local" Jacobian

$$\bigcup \quad \nabla_{\boldsymbol{U}} L = \sum_{t} \left(\nabla_{\boldsymbol{h}^{(t)}} L \right) \frac{\partial \boldsymbol{h}^{(t)}}{\partial \boldsymbol{U}}$$

 $(z^{(\tau)})$

 $h^{(au)}$

 $x^{(\tau)}$

RNN for Sequence Prediction

RNN for Sequence Prediction

RNN for Sequence Representation (Encoder)

RNN-based for Machine Translation

Le chien sur la plage
The dog on the beach

Encoder-Decoder Architecture

Gated Recurrent Neural Networks

Language Technologies Institute

Long-term Dependencies

Vanishing gradient problem for RNNs:

The influence of a given input on the hidden layer, and therefore on the network output, either decays or blows up exponentially as it cycles around the network's recurrent connections.

Recurrent Neural Networks

LSTM ideas: (1) "Memory" Cell and Self Loop

[Hochreiter and Schmidhuber, 1997]

Long Short-Term Memory (LSTM)

LSTM Ideas: (2) Input and Output Gates

[Hochreiter and Schmidhuber, 1997]

LSTM Ideas: (3) Forget Gate [Gers et al., 2000]

Recurrent Neural Network using LSTM Units

Gradient can still be computer using backpropagation!

Bi-directional LSTM Network

Deep LSTM Network

Carnegie Mellon University

50

And There Are More Ways To Model Sequences...

Self-attention Models (e.g., BERT, RoBERTa)

Syntax and Language Structure

Language Technologies Institute

Syntax and Language Structure

What can you tell about this sentence?

Syntax and Language Structure

What can you tell about this sentence?

Main idea: Syntactic structure consists of *lexical items*, linked by binary asymmetric relations called *dependencies*

- Easier to convert to predicate-argument structure
- > You can try to convert one representation into another

But, in general, these formalisms are not equivalent

Ambiguity in Syntactic Parsing

"Like" can be a verb or a preposition

- I like/VBP candy.
- Time flies like/IN an arrow.

"Around" can be a preposition, particle, or adverb

- I bought it at the shop around/IN the corner.
- I never got around/RP to getting a car.
- A new Prius costs around/RB \$25K.

Language Ambiguity

Recursive Neural Network

Language Technologies Institute

How to Model Syntax with RNNs?

We could use Part-of-Speech tags.

Tree-based RNNs (or Recursive Neural Network)

Recursive Neural Unit

Pair-wise combination of two input features

Recursive Neural Network for Sentiment Analysis

Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013

Recursive Neural Network for Sentiment Analysis

Classification of a sentence using tree-based compositionality of words

Demo: http://nlp.stanford.edu/sentiment/

Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013

Stack LSTM

Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015

Stack LSTM

Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015

Resources

- Stanford NLP software
- https://nlp.stanford.edu/software/
 - Stanford Parser
 - Stanford POS Tagger
- UC Berkeley Parser

https://github.com/slavpetrov/berkeleyparser

 Parsers by Kenji Sagae (syntactic parsers) <u>http://www.sagae.org/software.html</u>

