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Administrative Stuff
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Piazza Live Q&A – Reminder 
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Lecture Highlights - Reminder

https://forms.gle/W1VJDWaitEumn4XSA

IMPORTANT: Be sure you received an email after your submission 

(or revisit the form and your answers should be there).

New set of instructions…

…but same deadline: Saturday 10:40am

https://forms.gle/W1VJDWaitEumn4XSA


Reading Assignments – Reminder

Week 3 reading assignment was posted 

1. Friday 8pm: Post your summary

2. Monday 8pm: End of the reading assignment

Be sure to post your discussion comments, questions 

and answers before Monday 8pm!

Late submissions will be penalized

Start the discussion early ☺
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Grades on Canvas

Grades are now on 

CMU Canvas for:

❑Lecture highlights

❑Reading assignments

Grades for the project 

assignments will be on 

gradescope
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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 3.2: Language 

Representations and RNNs

* Original version co-developed with Tadas Baltrusaitis



Lecture Objectives

▪ Word representations 

▪ Distributional hypothesis

▪ Learning neural representations 

▪ Sentence representations and sequence modeling

▪ Recurrent neural networks

▪ Gated recurrent neural networks

▪ Backpropagation through time

▪ Syntax and language structure

▪ Phrase-structure and dependency grammars

▪ Recursive neural network

▪ Tree-based RNN, Stack LSTM
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Word 

Representations



What is the meaning of “bardiwac”?

▪ He handed her her glass of bardiwac.

▪ Beef dishes are made to complement the bardiwacs.

▪ Nigel staggered to his feet, face flushed from too
much bardiwac.

▪ Malbec, one of the lesser-known bardiwac grapes,
responds well to Australia’s sunshine.

▪ I dined off bread and cheese and this excellent
bardiwac.

▪ The drinks were delicious: blood-red bardiwac as
well as light, sweet Rhenish.

 bardiwac is a heavy red alcoholic beverage made
from grapes
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How to learn (word) features/representations?

Distribution hypothesis: Approximate the 

word meaning by its surrounding words

Words used in a similar context will lie close together

He was walking away because …

He was running away because …

Instead of capturing co-occurrence counts directly, 

predict surrounding words of every word



Geometric interpretation

▪ row vector xdog

describes usage of 

word dog in the 

corpus

▪ can be seen as 

coordinates of point in 

n-dimensional 

Euclidean space Rn

13
Stefan Evert 2010



Distance and similarity  

▪ illustrated for two 

dimensions: get and 

use: xdog = (115, 10)

▪ similarity = spatial 

proximity (Euclidean 

distance)

▪ location depends on 

frequency of noun 

(fdog  2.7 · fcat)

Stefan Evert 2010



Angle and similarity  

▪ direction more 

important than 

location

▪ normalise “length” 

||xdog|| of vector

▪ or use angle  as 

distance measure

Stefan Evert 2010





x W1 W2 y

[0; 0; 0; 0;….; 0; 0; 1; 0;…; 0; 0] [0; 1; 0; 0;….; 0; 0; 0; 0;…; 0; 0]

[0; 0; 0; 1;….; 0; 0; 0; 0;…; 0; 0]

[0; 0; 0; 0;….; 1; 0; 0; 0;…; 0; 0]

[0; 0; 0; 0;….; 0; 0; 0; 0;…; 0; 1]

walking

He was walking away because …

He was running away because …

He

Was

Away

because

How to learn (word) features/representations?

300d 300d

1
0

0
 0

0
0

d

1
0

0
 0

0
0

d

Word2vec algorithm: https://code.google.com/p/word2vec/



How to use these word representations

Classic NLP:

Walking:        [0; 0; 0; 0;….; 0; 0; 1; 0;…; 0; 0]

Running:          [0; 0; 0; 0;….; 0; 0; 0; 0;…; 1; 0]

Goal:

Walking:         [0,1; 0,0003; 0;….; 0,02; 0.08; 0,05]

Running:        [0,1; 0,0004; 0;….; 0,01; 0.09; 0,05]

Similarity = 0.0

Similarity = 0.9

If we would have a vocabulary of 100 000 words:

100 000 dimensional vector

300 dimensional vector

x W1

300d

1
0
0
 0

0
0
d

Transform: x’=x*W



Vector space models of words

While learning these word representations, we are 

actually building a vector space in which all words 

reside with certain relationships between them

This vector space allows for algebraic operations:

Vec(king) – vec(man) + vec(woman) ≈ vec(queen)

Encodes both syntactic and semantic relationships



Vector space models of words: semantic relationships

Trained on the Google news corpus with over 300 billion words



Word Representation Resources

Word-level representations:

Word2Vec (Google, 2013)

https://code.google.com/archive/p/word2vec/

Glove (Stanford, 2014)

https://nlp.stanford.edu/projects/glove/

FastText (Facebook, 2017)

https://fasttext.cc/

Sentence-level representations:

ELMO (Allen Institute for AI, 2018)

https://allennlp.org/elmo

BERT (Google, 2018)

https://github.com/google-research/bert

RoBERTa (Facebook, 2019)

https://github.com/pytorch/fairseq

Word representations 

are contextualized 

using all the words in 

the sentence.

More details later 

in this lecture and 

during Week 5

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://allennlp.org/elmo
https://github.com/google-research/bert
https://github.com/pytorch/fairseq


Lexicon-based Word Representation

LIWC: Language Inquiry & Word Count

Manually created dictionaries for different topics and categories:
▪ Function words: pronouns, preposition, negation…

▪ Affect words: positive, negative emotions

▪ Social words: family, friends, referents

▪ Cognitive processes: Insight, cause, …

▪ Perceptual processes: Seeing, hearing, feeling

▪ Biological processes: Body, health/illness,…

▪ Drives and needs:  Affiliation, achievement, …

▪ Time orientation: past, present, future

▪ Relativity: motion, space, time

▪ Personal concerns: work, leisure, money, religion …

▪ Informal speech: swear words, fillers, assent,…

LIWC can encode individual words or full sentences.

https://liwc.wpengine.com/ Commercial software. Contact TAs in 

advance if you would like to use it.

https://liwc.wpengine.com/


Other Lexicon Resources

Lexicons
• General Inquirer (Stone et al., 1966)

• OpinionFinder lexicon (Wiebe & Riloff, 2005)

• SentiWordNet (Esuli & Sebastiani, 2006)

• LIWC (Pennebaker)

Other Tools

• LightSIDE

• Stanford NLP toolbox

• IBM Watson Tone Analyzer

• Google Cloud Natural Language

• Microsoft Azure Text Analytics
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Sentence Modeling
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Sentence Modeling: Sequence Label Prediction

Sentiment ?
(positive or negative)

Prediction

Ideal for anyone with an interest in disguises

Sentiment label?
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Sentence Modeling: Sequence Prediction

Part-of-speech ?
(noun, verb,…)

Prediction

Ideal for anyone with an interest in disguises

POS? POS? POS? POS? POS? POS? POS? POS?
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Sentence Modeling: Sequence Representation

Sequence representationLearning 

Ideal for anyone with an interest in disguises

[0,1; 0,0004; 0;….; 0,01; 0.09; 0,05]
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Sentence Modeling: Language Model

Language ModelPrediction 

Ideal for anyone with

Next word?

an interest in disguises
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Language Model Application: Language Generation

Generation

[0,1; 

0,0004; 

….; 

0.09; 

0,05]

Embedding

[0,1; 

0,0004; 

….; 

0.09; 

0,05]

Example: Image captioning



Language Model Application: Speech Recognition

)(

)()|(
maxarg

acousticsP

cewordsequenPcewordsequenacousticsP

cewordsequen



Language model

=)|(maxarg acousticscewordsequenP
cewordsequen

)()|(maxarg cewordsequenPcewordsequenacousticsP
cewordsequen


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Challenges in Sequence Modeling

▪ Language Model

▪ Sentiment ?
(positive or negative)

▪ Part-of-speech ?
(noun, verb,…)

Main Challenges:

▪ Sequences of variable lengths (e.g., sentences)

▪ Keep the number of parameters at a minimum

▪ Take advantage of possible redundancy

▪ Sequence representation

Model
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Recurrent 

Neural Networks



32

Recurrent Neural Network

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)
𝑽

𝑼

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙(𝑡))

Feedforward Neural Network
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Recurrent Neural Networks

𝑾

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)
𝑽

𝑼

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙 𝑡 +𝑾𝒉(𝑡−1))

𝐿 =෍

𝑡

𝐿(𝑡)
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Recurrent Neural Networks - Unrolling

𝒙(1)

𝒛(𝟏)

𝒉(1)
𝑽

𝑼

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝒉(2)

𝐿(2)

𝑦(2)

𝑾

𝒙(3)

𝒛(3)

𝒉(3)

𝐿(3)

𝑦(3)

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙 𝑡 +𝑾𝒉(𝑡−1))

Same model parameters are used for all time parts.

𝐿 =෍

𝑡

𝐿(𝑡)
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Backpropagation Through Time

𝒙(𝜏)

𝒛(𝜏)

𝒉(𝜏)

𝐿(𝜏)

𝑦(𝜏)

𝜕𝐿

𝜕𝐿(𝑡)

𝐿 =෍

𝑡

𝐿(𝑡) = −෍

𝑡

𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

Gradient

“local” Jacobian

“backprop” gradient=

x𝐿(𝑡)

𝒛(𝑡)
𝛻𝒛 𝑡 𝐿

𝑖

𝒉(𝜏) 𝛻𝒉 𝜏 𝐿 = 𝛻𝒛 𝜏 𝐿
𝜕𝑧(𝜏)

𝜕𝒉(𝜏)
= 𝛻𝒛 𝜏 𝐿𝑽

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧𝑖
𝑡 − 𝟏𝑖,𝑦(𝑡)

𝛻𝒉 𝑡 𝐿𝒉(𝑡+1)𝒉(𝑡)

𝐿(𝜏) or

or𝒛(𝜏)
=

𝜕𝐿

𝜕𝑧𝑖
(𝑡)

= 1

=
𝜕𝐿

𝜕𝐿(𝑡)
𝜕𝐿(𝑡)

𝜕𝑧𝑖
(𝑡)

= 𝛻𝒛 𝑡 𝐿
𝜕𝒐(𝑡)

𝜕𝒉(𝑡)
+ 𝛻𝒛 𝑡+1 𝐿

𝜕𝒉(𝑡+1)

𝜕𝒉(𝑡)
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Backpropagation Through Time

𝒙(𝜏)

𝒛(𝜏)

𝒉(𝜏)

𝐿(𝜏)

𝑦(𝜏)

𝐿 =෍

𝑡

𝐿(𝑡) = −෍

𝑡

𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

Gradient

“local” Jacobian

“backprop” gradient=

x

𝑽

𝑼

𝑾

𝑽 𝛻𝑽𝐿

𝑾 𝛻𝑾𝐿 =෍

𝑡

𝛻𝒉 𝑡 𝐿
𝜕𝒉(𝑡)

𝜕𝑾

𝑼 𝛻𝑼𝐿 =෍

𝑡

𝛻𝒉 𝑡 𝐿
𝜕𝒉(𝑡)

𝜕𝑼

=෍

𝑡

𝛻𝒛 𝑡 𝐿
𝜕𝒛(𝑡)

𝜕𝑽



RNN for Sequence Prediction

P(word is 

positive)

Ideal for anyone disguises

𝑳 =
𝟏

𝑵
෍

𝒕

𝑳(𝒕) =
𝟏

𝑵
෍

𝒕

−𝒍𝒐𝒈𝑷(𝒀 = 𝒚(𝒕)|𝒛(𝒕))

P(word is 

positive)

P(word is 

positive)

P(word is 

positive)

What is the loss?



RNN for Sequence Prediction

P(sequence is 

positive)

Ideal for anyone disguises

𝑳 = 𝑳(𝑵) = −𝒍𝒐𝒈𝑷(𝒀 = 𝒚(𝑵)|𝒛(𝑵))What is the loss?



RNN for Sequence Representation (Encoder)

1-of-N encoding 

of “START”
1-of-N encoding 

of “dog”

1-of-N encoding 

of “on”
1-of-N encoding 

of “nice”

Sequence

Representation



RNN-based for Machine Translation 

1-of-N encoding 

of “le”
1-of-N encoding 

of “chien”

1-of-N encoding 

of “la”
1-of-N encoding 

of “plage”

1-of-N encoding 

of “sur”

Le chien sur la plage The dog on the beach



Encoder-Decoder Architecture

1-of-N encoding 

of “le”
1-of-N encoding 

of “chien”

1-of-N encoding 

of “la”
1-of-N encoding 

of “plage”

1-of-N encoding 

of “sur”

Context

What is the loss function?
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Gated Recurrent 

Neural Networks
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Long-term Dependencies

Vanishing gradient problem for RNNs:

➢ The influence of a given input on the hidden layer, and therefore on 

the network output, either decays or blows up exponentially as it 

cycles around the network's recurrent connections. 

𝒉(𝑡)~𝑡𝑎𝑛ℎ(𝑾𝒉(𝑡−1))
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Recurrent Neural Networks

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)
𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒉(𝑡+1)
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LSTM ideas: (1) “Memory” Cell and Self Loop

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)

Self-

𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒄(𝑡)
cell

Self-

loop

𝒉(𝑡+1)

Long Short-Term Memory (LSTM)

[Hochreiter and Schmidhuber, 1997]
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LSTM Ideas: (2) Input and Output Gates

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)

Self-

𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒄(𝑡)
cell

𝒉(𝑡+1)

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

Input gate

Output gate

sum

Self-

loop

[Hochreiter and Schmidhuber, 1997]
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LSTM Ideas: (3) Forget Gate

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)

Self-

𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒄(𝑡)
cell

Self-

loop

𝒉(𝑡+1)

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

xInput gate

Forget gate

Output gate

sum

[Gers et al., 2000]

𝒈
𝒊
𝒇
𝒐

=

𝑡𝑎𝑛ℎ
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚

𝑾 𝒉(𝑡)

𝒙(𝑡)

𝒊

𝒈

𝒇

𝒐

𝒄(𝑡) = 𝒇⨀𝒄 𝑡−1 + 𝒊⨀𝒈

𝒉(𝑡) = 𝒐⨀tanh(𝒄 𝑡 )
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Recurrent Neural Network using LSTM Units

𝒙(1)

𝒛(𝟏)

𝑽

𝑾

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝐿(2)

𝑦(2)

𝒙(3)

𝒛(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝐿(𝜏)

𝑦(𝜏)

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

Gradient can still be computer using backpropagation!
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Bi-directional LSTM Network

𝒙(1)

𝒛(𝟏)

𝑽

𝑾𝟐

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝐿(2)

𝑦(2)

𝒙(3)

𝒛(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝐿(𝜏)

𝑦(𝜏)

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝑾𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

1 1 1 1

2222

ELMO: Two bi-directional LSTMs are used to 

contextualize the word embeddings
https://allennlp.org/elmo

https://allennlp.org/elmo
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Deep LSTM Network

𝒙(1)

𝒛(𝟏)

𝑽

𝑾𝟐

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝐿(2)

𝑦(2)

𝒙(3)

𝒛(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝐿(𝜏)

𝑦(𝜏)

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝑾𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

1 1 1 1

2222
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And There Are More Ways To Model Sequences…

… in Week 5!

Self-attention Models
(e.g., BERT, RoBERTa)
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Syntax and 

Language Structure



Syntax and Language Structure

What can you tell about this sentence?

VerbNoun Adjective

Alice   ate    yellow       squash

Noun

Noun phrase

Verb phrase

Sentence

Noun 

phrase

1 Part-of-speech tags

2 Syntactic parse tree

Phrase-structure Grammar



Syntax and Language Structure

What can you tell about this sentence?

VerbNoun Adjective

Alice   ate    yellow       squash

Noun 1 Part-of-speech tags

2 Syntactic parse tree

Phrase-structure Grammar

Dependency Grammar

subject

object

attribute

3

Noun phrase

Verb phrase

Sentence

Noun 

phrase



Dependency Grammar

Main idea: Syntactic structure consists of lexical items, 

linked by binary asymmetric relations called dependencies

The     boy     saw     the   dog

Subject

Object

Det.

Det.

ROOT

➢ Easier to convert to predicate-argument structure

➢ You can try to convert one representation into another

❑But, in general, these formalisms are not equivalent
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Ambiguity in Syntactic Parsing

“Like” can be a verb or a preposition

▪ I like/VBP candy.

▪ Time flies like/IN an arrow.

“Around” can be a preposition, particle, or 

adverb

▪ I bought it at the shop around/IN the corner.

▪ I never got around/RP to getting a car.

▪ A new Prius costs around/RB $25K.



Language Ambiguity

SS

NP NP

NP NPNP  

VP VP

V VN N

N N N NDet Det

Salesmen   sold    the   dog    biscuits Salesmen    sold the  dog   biscuits
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Det Noun Verb Det Noun Prep Det Noun  

The   boy    saw  the   dog in     the  park

S

VP

NP NP

Det N V Det N  
The boy saw the dog

The     boy     saw     the   dog

Language Syntax – Examples 

Subject

Object

Det.

Det.

Dependency ParsingConstituency Parsing

Part of Speech tagging

ROOT

How to take advantage of syntax when modeling 

language with neural networks?
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Recursive Neural 

Network
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How to Model Syntax with RNNs?

S

VP

NP NP

Det N V Det N  
The boy likes the cars

The  boy likes  the cars

?

We could use Part-of-Speech tags.
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Tree-based RNNs (or Recursive Neural Network)

S

VP

NP NP

Det N V Det N  
The boy likes the cars The  boy likes  the cars
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Recursive Neural Unit

Pair-wise combination of two input features

W

300d

6
0
0
d X

1

2

t

a

n

h

x

1

x

2

3
0
0
d

Activation function

3
0
0
d

3
0
0
d

The   boy
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Recursive Neural Network for Sentiment Analysis

Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013
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Recursive Neural Network for Sentiment Analysis

Classification of a sentence using tree-based compositionality of words

Demo: http://nlp.stanford.edu/sentiment/

Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013

http://nlp.stanford.edu/sentiment/
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Stack LSTM

Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015

stack of partially 
constructed 

dependency subtrees

buffer of words 
remaining to be 

processed

stack representing the 
history of actions taken 

by the parser
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Stack LSTM

Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015
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Resources

▪ Stanford NLP software

https://nlp.stanford.edu/software/

▪ Stanford Parser

▪ Stanford POS Tagger

▪ UC Berkeley Parser

https://github.com/slavpetrov/berkeleyparser

▪ Parsers by Kenji Sagae (syntactic parsers)
http://www.sagae.org/software.html

https://nlp.stanford.edu/software/
https://github.com/slavpetrov/berkeleyparser
http://www.sagae.org/software.html

