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Abstract

Linking two data sources is a basic building block in
numerous computer vision problems. Canonical Correla-
tion Analysis (CCA) achieves this by utilizing a linear opti-
mizer in order to maximize the correlation between the two
views. Recent work makes use of non-linear models, includ-
ing deep learning techniques, that optimize the CCA loss in
some feature space. In this paper, we introduce a novel,
bi-directional neural network architecture for the task of
matching vectors from two data sources. Our approach
employs two tied neural network channels that project the
two views into a common, maximally correlated space us-
ing the Euclidean loss. We show a direct link between the
correlation-based loss and Euclidean loss, enabling the use
of Euclidean loss for correlation maximization. To over-
come common Euclidean regression optimization problems,
we modify well-known techniques to our problem, including
batch normalization and dropout. We show state of the art
results on a number of computer vision matching tasks in-
cluding MNIST image matching and sentence-image match-
ing on the Flickr8k, Flickr30k and COCO datasets.

1. Introduction
Computer vision emerged from its roots in image pro-

cessing when researchers began to seek an understanding
of the scene behind the image. Linking visual data X with
an external data source Y is, therefore, the defining task of
computer vision. When applying machine learning tools to
solve such tasks, we often consider the outside source Y to
be univariate, e.g., in image classification. A more general
scenario is the one in which Y is also multidimensional.
Examples of such view to view linking include matching
between video and concurrent audio, matching an image
with its textual description, matching images from two fixed
views, etc.

The classical method of matching vectors between two
different domains is Canonical Correlation Analysis (CCA).
The algorithm has been generalized in many ways: regular-

ization was added [30], kernels were introduced [2, 31, 5],
versions for more than two sources were developed [42] etc.
Recently, with the advent of deep learning methods, deep
versions were created and showed promise.

The current deep CCA methods optimize the CCA loss
on top of a deep neural network architecture. In this work,
an alternative is presented in which a network is built to
map one source X to another source Y and back. This ar-
chitecture, which bears similarities to the encoder-decoder
framework [12], employs the Euclidean loss.

The Euclidean loss is hard to optimize for, when com-
pared to classification losses such as the cross entropy loss.
We, therefore, introduce a number of contributions that are
critical to the success of our methods. These include: (i) a
mid-way loss term that helps support the training of the hid-
den layers; (ii) a decorrelation regularization term that links
the problem back to CCA; (iii) modified batch normaliza-
tion layers; (iv) a regularization of the scale parameter that
ensures that the variance does not diminish from one layer
to the next; (v) a tied dropout method; and (vi) a method for
dealing with high-dimensional data.

Taken together, we are able to present a general and ro-
bust method. In an extensive set of experiments, we present
clear advantages over both the classical and recent methods.

2. Previous work
Canonical Correlation Analysis (CCA) [15] is a statisti-

cal method for computing a linear projection for two views
into a common space which maximizes their correlation.
CCA plays a crucial role in many computer vision applica-
tions including multiview analysis [1], multimodal human
behavior analysis [40], action recognition [17], and linking
text with images [19]. There are a large number of CCA
variants including: regularized CCA [45], Nonparametric
canonical correlation analysis (NCCA) [32], and Kernel
canonical correlation analysis (KCCA) [2, 31, 5], a method
for producing non-linear, non-parametric projections using
the kernel trick. Recently, randomized non-linear compo-
nent analysis (RCCA) [33] emerged as a low-rank approxi-
mation of KCCA.
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While CCA is restricted to linear projections, KCCA is
restricted to a fixed kernel. Both methods do not scale well
with the size of the dataset and the size of the representa-
tions. A number of methods [4, 47, 7, 35] based on Deep
Learning were recently proposed that aim to overcome these
drawbacks. Deep canonical correlation analysis [4] pro-
cesses the pairs of inputs through two network pipelines and
compares the results of each pipeline via the CCA loss.

[49] and [46] extend [4] to the task of images and text
matching. The first employs the same model and training
process of [4] while the latter employs a different training
scheme on the same architecture. Unlike [49] and [46] we
present a novel deep model for matching images and text.

Other deep CCA methods, including ours, are inspired
by a family of encoding/decoding unsupervised generative
models [13, 6, 29, 43, 44] that aim to capture a meaningful
representation of input x by applying a non-linear encoding
function E(x), decoding the encoded signal using a non-
linear decoding function D(x) and minimizing the squared
L2 distance between the original input and the decoded out-
put. Some of the auto-encoder based algorithms incorporate
a noise on the input [43, 44] or enforce a desired property
using a regularization term [29].

Correlation Networks (CorrNet) [7] and Deep canoni-
cally correlated autoencoders (DCCAE) [47] expand the
auto-encoder scheme by considering two input views and
two output views. The encoding is shared between the two
views (CorrNet) or the differences in the encodings are min-
imized (DCCAE). In both cases, it serves as a common bot-
tleneck. Our model goes from one view to the other (in both
directions) and not from each view to a reconstructed view.

The CCA loss is used by both CorrNet and DCCAE. The
latter contribution explicitly states that the L2 loss is inferior
to the CCA loss term [47]. Our network, however, uses L2
successfully. This reinforces the need to apply the meth-
ods we propose in this work in order to enable effective
training based on the L2 loss. For this end, we introduce
innovative techniques based on common practices in deep
learning, adapted to the problem at hand. These techniques
include: dropout, batch normalization, and leaky ReLUs.
While the latter is applied as is, the former two need to be
carefully modified for our networks.

Dropout [41] is a regularization method developed to re-
duce over-fitting in deep neural networks by zeroing a group
of neurons at each training iteration. This stochastic elim-
ination reduces the co-adaptation between neurons in the
same layer and simulates the training of an ensemble of net-
works with shared weights.

Batch Normalization [38] is used as a stabilizing mech-
anism for training a neural network by scaling the output of
a hidden layer to zero norm and unit variance. This scaling
lowers the change of distribution between neurons through-
out the network and helps to speed up the training process.

Rectified Linear Unit (ReLU) [34] is a non-linear activa-
tion function that does not suffer from the saturation phe-
nomenon, which the classical sigmoids suffer from. Con-
ventional ReLU zero negative activations, and as a result,
no gradient is produced for many of the neurons. A few
variants of ReLU were, therefore, proposed [27, 10] that re-
duce the effect of negative activations, but do not zero them
completely. Similar to [27] and unlike [10], we do not train
the leakiness parameter and instead set it to a constant value.

As one of our contributions, we add a regularization term
that removes the pairwise covariances of the learned fea-
tures. A similar term was recently reported in work [8] as
part of a classification system (unrelated to modeling corre-
lations between vectors). We adapt their terminology when
describing our bi-directional term.

3. The Network Model

This section contains a detailed description of our pro-
posed model, which we term the 2-way net1 . The model
utilizes the L2 loss in order to create a bi-directional map-
ping between two vector spaces. The absence of a correla-
tion based loss (such as in DeepCCA [4] and CorrNet [7])
makes this model simpler. Like other regression problems,
there are inherent challenges in obtaining meaningful so-
lutions [9]. These challenges are further amplified by the
multivariate and layered structure of the performed regres-
sion. We, therefore, modify the problem in various ways,
each contributing to the overall success.

3.1. Basic Architecture

Our proposed architecture is illustrated in Fig. 1. It con-
tains two reconstruction channels. Both channels contains
k hidden layers {h1, h2, ..., hk} and {ĥ1, ĥ2, ..., ĥk}. Lets
define Hi(x) and ˆHi(y) as the output of each channel at
layer i given network inputs x and y respectively, the model
is optimized to minimize the Eucledean loss between both

ˆHi(y) and x, and Hi(x) and y. The two channels share
weights and dropout function as explained in 3.5

The activations of each hidden layer are computed by
a function h(x) = Φ (Wx+ b2) from Rd1 to Rd2 , where
W ∈ Rd2×d1 is the weight matrix, b2 ∈ Rd2 is the bias
vector and Φ is a non-linear function, which in our model is
a leaky rectified linear unit [27]. The tied layer is given as
ĥ(y) = Φ

(
WT y + b1

)
, and employs the transpose of the

matrix W and an untied bias term b1 ∈ Rd1 .
Given a pair of views x ∈ Rdx and y ∈ Rdy , two

reconstructions are created: x̃ ∈ Rdx and ỹ ∈ Rdy by
employing the two networks H = h1 ◦ h2 ◦ ... ◦ hk and
Ĥ = ĥk ◦ ĥxk−1

◦ ... ◦ ĥ1, as x̃ = Ĥ(y) and ỹ = H(x).

1Code can be found at https://github.com/aviveise/
2WayNet
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Figure 1: The 2-way network model. Each channel trans-
forms one view into the other. A middle representation is
extracted for correlation maximization

Loss is measured between x and x̃ and y and ỹ. More-
over, the Euclidean distance is also minimized directly on
the desired representations. In order to do so, we select a
mid-network position j = dk/2e. We then add a loss term
by considering the two networks: Hj = h1 ◦ h2 ◦ ... ◦ hj ,
and Ĥj = ĥk ◦ ĥxk−1

◦ ... ◦ ĥj+1. A loss term is then added
that compares Hj(x) and Ĥj(y).

The overall loss (sans regularization terms) is given by
the three terms Lx = ‖x − x̃‖2, Ly = ‖y − ỹ‖2, and
Lh = ‖Hj(x) − Ĥj(y)‖2. Note that minimizing Eu-
clidean distances differs from maximizing the pairwise cor-
relations as is done in CCA and its variants DeepCCA [4]

and RCCA [33].
In our experiments, in order to compare with previous

work, we use the correlation as the success metric. As the
Lemma below shows, there is a connection between the cor-
relation of two vectors and their Euclidean distance, this
connection also depends on the variance of the vectors.

Lemma 1. Let x ∈ Rn and y ∈ Rn denote two paired
lists of n matching samples from two random variables with
zero mean and σ2

x and σ2
y variances. Then, the correla-

tion between the two n dimensional samples x and y equals
σx

2σy
+

σy

2σx
− ‖x−y‖

2

2nσxσy
.

Proof. Given two n-dimensional vectors x and y we con-
sider the squared Euclidean distance

‖x− y‖2 =

n∑
j=1

(x2j ) +

n∑
j=1

(y2j )− 2

n∑
j=1

(xjyj)

Thus:
n∑
j=1

(xjyj) =
nσ2

x

2
+
nσ2

y

2
− ‖x− y‖

2

2
(1)

For zero mean variables, the correlation between x and y is
given by c = 1

n

∑n
j=1(xjyj)

σxσy
. Combining with 1 results in

what had to be proven.

Given a batch of samples from views x and y, we mea-
sure the correlation between the outputs of two matching
layers, {hj(x1), ..., hj(xn)} and {ĥj(yi), ..., ĥj(yn)} as the
sum of correlations between the activations of each match-
ing neuron. The Lemma below extends Lemma 1 and shows
that the sum of correlations which we aim to maximize is
bounded by a function of the Euclidean loss between the
two representations.

Lemma 2. Given two matching hidden layers, hj and ĥj
with m neurons each. ak is the activation vector of neuron
k from hj with standard deviation σak and bk is the acti-
vation vector of neuron k from ĥj with standard deviation
σbk . Each vector is produced by feeding a batch of samples
of size n from views x and y through channels H and Ĥ
respectively. The sum of correlations C is bounded by:

m∑
k=1

Ck ≥
1

2

m∑
k=1

(
σ2
ak

+ σ2
bk

σakσbk
)

− 1

2n

m∑
k=1

‖ak − bk‖2
m∑
k=1

σ−1ak σ
−1
bk

(2)

Proof. From lemma 1, we get:

m∑
k=1

Ck =
1

2

m∑
k=1

(
σ2
ak

+ σ2
bk

σakσbk
)− 1

2n

m∑
k=1

(
‖ak − bk‖2

σakσbk
) (3)
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We will define Gm =
∑m
k=1 ‖ak − bk‖

2 and fk =
σ−1ak σ

−1
bk

. Using Abel transform:

m∑
k=1

‖ak − bk‖2

σakσbk
= fmGm −

m−1∑
k=1

Gkfk+1 +

m−1∑
k=1

Gkfk

≤ fmGm +

m−1∑
k=1

Gkfk

≤ fmGm +Gm

m−1∑
k=1

fk = Gm

m∑
k=1

fk

=

m∑
k=1

‖ak − bk‖2
m∑
k=1

σ−1ak σ
−1
bk

(4)

Note that both σakσbk and ‖ak − bk‖2 are positive for all k
which makes the above inequalities valid. Inserting 4 in 3
results in what had to be proven.

From the above Lemma, we can conclude that by min-
imizing the L2 loss together with maximizing the variance
of each neuron activation will result in maximization of the
sum of correlations.

Solving this regression problem tends to eliminate the
variance of the output representations. To overcome this
limitation, we add two instruments. The first is batch nor-
malization layer [38] (BN) after each hidden layer. The set-
tings of the batch normalization layer differ from the com-
mon settings to adapt to this model. Another instrument is
regularizing the gamma parameter the batch normalization
layer introduces. More details can be found below.

To the loss term, we add regularization terms. The
first is weight decay Rw =

∑
‖W‖2. A second reg-

ularization term is added in order to reduce the cross
correlations between the network activations of the same
layer. The property we encourage is inherent to CCA-
based solutions where decorrelation is enforced. In our
network solutions, we add a soft regularization term. Dur-
ing training, we consider the N samples of a single batch
{(xi, yi)}Ni=1 and consider the set of mid-network activa-
tions {(Hj(xi), Ĥ

j(yi))}Ni=1. The decorrelation regular-
ization term is given by:

Rdecov =
1

2

(
‖Ch‖2F − ‖diag (Ch) ‖22

)
+

1

2

(
‖Cĥ‖

2
F − ‖diag

(
Cĥ
)
‖22
)
,

(5)

where Ch = 1
N

∑
iH

j(xi)
>Hj(xi) is the covariance es-

timator for Hj(x) and Cĥ = 1
N

∑
i Ĥ

j(yi)
>Ĥj(yi) is the

covariance estimator for Ĥj(y). This regularization term
is minimized when the off-diagonal coefficients of both Ch
and Cĥ are zero.

3.2. Batch normalization layers

As shown above, in order to maximize the correlation
we need not only to minimize the Euclidean loss but also to
increase the variance of each neuron’s output. This is done
by introducing a batch normalization layer [38] customized
to meet the model’s needs.

Given a vector of activations a = [a1, . . . , ad] produced
by one of the network’s hidden layers for a given batch of
inputs, we normalize a to produce a′ = [a′1, . . . , a

′
d], where

a′k = ak−µk

σk
and µk and σ2

k are the mean and variance of
neuron k on the given batch. This is followed by scaling and
shifting by learned parameters to produce a′′k = γka

′
k + βk.

The BN layer mitigates the loss of variance by enforcing
unit variance and by removing the influence of the weights
of the hidden layer on the output’s variance.

BN layers are usually placed before the non-linearity or
on the input of the layer as a preprocessing phase as shown
in [11]. This setting poses several problems. First, ReLU
lowers the variance of the output which is counterproduc-
tive to our goal. Second, applying ReLU after BN has the
effect of zeroing every k when ak is below the mean in a
given batch plus the term βk/γk. Typically, βk is initialized
to zero and for a symmetric activation distribution, half of
the activations are zeroed. When employing a bi-directional
network, the zeroing effect occurs in both directions.

In order to estimate the magnitude of this effect, let us
assume that we have a process that at time i outputs two
vectors ui = Hj(xi) and vi = Ĥj(yi), both in Rd, which
are the hidden representation at layer j for a pair of samples
(xi, yi). Denote by ρk the correlation between the activa-
tions at neuron k.

Let si = {k|ui(k) > µk} be the group of indices of the
values in ui that are larger than their population mean. Let
ŝi = {k|vi(k) > µ̂k} be the equivalent for the vectors vi.
We observe the intersection si ∩ ŝi, which is the group of
active neurons, following a threshold at the mean value on
both ui and vi.

As the Lemma below shows, even if the correlation ρk is
relatively high, the size of the intersection set si∩ŝi is closer
to the value d/4 obtained for randomly permuted vectors
than to the maximal value of d/2.

Lemma 3. Assume that ui and vi are drawn from a mul-
tivariate normal distribution with zero mean and the iden-
tity covariance matrix, such that the correlation between
ui(k) and vi(k) for all k is ρk = ρ. Then, E (|si ∩ ŝi|) =

d
[
1
4 + sin−1ρ

2π

]
.

Proof. To estimate the size of c, let us look at the quadrant
probability p of ui(k) and vi(k) which is given analytically
by [3],

p = P (ui(k) > 0, vi(k) > 0) =
1

4
+

sin−1ρ

2π
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Given that the variables in ui(k) and vi(k) are drawn in-
dependently, the probability of P (|c| = t) has a binomial
distribution with probability p, thus the mean of the size of
c is equal to E(|c|) = dp = d

[
1
4 + sin−1ρ

2π

]
.

Even in the case of a correlation as high as 0.6, the in-
tersection will include only about 35% of the neurons. For
neurons k not in this intersection, either both sides ui(k)
and vi(k) are zero, meaning that no backpropagation oc-
curs, or only one neuron is active, in which case only that
side is updated and the update is a simple shrinking effect,
since the loss is the magnitude of the activation.

In order to break this symmetry, we choose to employ
the BN after the non-linearity. This allows the network
to choose weights that result in mostly positive activations,
which remain positive after the ReLU activation units.

3.3. Highly leaky ReLU

Another method to prevent the harmful effects of zeroing
is by using leaky ReLU as our non-linear function. Leaky
ReLU was first introduced by [27] in order to overcome the
difficulties that arise from the elimination of the gradients
from neurons with negative activation. In the 2-Way net-
work, this effect is amplified, and we find leaky ReLU units
to be extremely important. Formally, a leaky ReLU is de-
fined as:

yi =

{
xi if x ≥ 0
axi if x < 0

where a < 1 is the leakiness coefficient and is fixed during
both training and testing. In all of our experiments, we use
a leakiness coefficient of 0.3. This value was selected on
the validation set of the Flickr8k experiment described in
Section 4 and is used for all experiments.

Using leaky ReLU helps to reduce the effect discussed
in Section 3.2 but does not replace the need for performing
BN after the non-linearity. As Lemma 3 shows, more than
half of the neurons will be multiplied by the leakiness coef-
ficient while their matching neuron will not. This asymmet-
ric scaling adds an artificial distance between the matching
neurons, which, in turn, increases the L2 loss and reduces
the training efficiency.

3.4. Variance injection

Applying BN on the output of each hidden layer is not
enough. The variance can still vanish during training. The
problem is that the γ factor introduced by each BN layer
can be arbitrary and can diminish during training, resulting
in low variance. To encourage high variance, we introduce a
novel regularization term of the form Rγ =

∑
j,k(1/γjk)2,

where γjk is the scaling parameter for neuron k in layer j.
This regularization term is enough to force the network

to avoid solutions with low variance and to seek more infor-

mative output. This is demonstrated experimentally in the
ablation study of Section 4.

The compound loss term we employ is of the form:

L = Lx + Ly + Lh + λwRw + λdecovRdecov + λγRγ

Where λw,λdecov , and λγ are the regularization coefficients.
While it seems that three regularization tradeoff hyperpa-
rameters would make selecting the parameter values diffi-
cult, the converse is true: in all of our varied set of exper-
iments λγ = λw, and λdecov is either set to a very high
value of 1/2 or, for small datasets, to 1/20 (see Section 4).
Moreover, by adding these terms, the network is much less
sensitive to the selection of λw and allows us to learn with
a much higher learning rate.

3.5. Tied dropout

Dropout [41] is a form of regularization method that
simulates the training of multiple networks with shared
weights. Dropout zeros neurons by element-wise multiply-
ing the output of a hidden layer consisting of d neurons for
a batch of n samples with a random matrix B of size d×n.
Each element ofB is drawn independently from a Bernoulli
distribution with a parameter p.

Since dropout eliminates random neurons, it prevents co-
adaptation of neurons, which is a desirable property for cor-
relation analysis. However, using dropout, as is, in our pro-
posed model is harmful. This is because the 2-Way network
aims to enhance correlations between parallel layers hj and
ĥj . The elimination of neurons independently in the hidden
layers creates an artificial loss, even for a perfect matching.

Let p be the dropout parameter for layer j, assume that
the same parameter is applied on both directions. In proba-
bility (1− p)2, a pair of matching neurons is active on both
sides and learning occurs with the true gradient. In proba-
bility p2, the pair of matching neurons is silent on both sides
and no learning occurs. In probability 2p(1 − p), only one
neuron is active resulting in a shrinking effect on the other
neuron. Here, too, shrinking of activations is can be damag-
ing since it might lead to a state of constant representation.

For a dropout probability of p = 0.5, half of the gradients
would stem from a match which is silent on exactly one
side, and the harmful effect is clearly seen in Section 4.

To overcome this problem, we introduce a tied dropout
layer, in which the same random matrix Bj is applied to
pairs of matching hidden layers: hj and ĥj , j = 1..K. This
sharing eliminates the artifacts introduced by the conven-
tional dropout while preserving the benefits of the stochas-
tic process and helps avoid over-fitting.

Using tied dropout layer changes the distribution of the
activations. In order to match the distribution at test time,
we incorporate a scaling factor at train time.

Assume that the activations of a single neuron are zero-
centered. As discussed below, most post BN activations are
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almost exactly centered. In this case, the variance of the
neuron activations is simply the sum of the squared activa-
tions. During training, only a ratio 1 − p of the activations
contributes to the variance. Therefore, we divide the activa-
tions, at train time, by

√
1− p.

3.6. Training high dimensional inputs

Some of the experiments shown below contain high di-
mensional data. High dimensional input directly increases
the number of parameters and can cause over-fitting as well
as an increase in training time and memory usage. To lower
the number of parameters, we introduce a new type of layer
we term locally dense layer. Such layer of size n is com-
posed ofm different dense layers h̄1, ..., h̄m of size n

m each.
Input x of size dx is divided intom different parts of size dx

m
and each part xi is connected into one of the dense layers
h̄i. The outputs of all inner hidden layers are concatenated,
thus producing the locally dense layer’s output. To the out-
put, we add a regular bias term b of size n. Using this layer
reduces the number of parameters by a factor of m compar-
ing to a conventional dense layer. In the experiments below,
when dealing with high dimensional input, we use a locally
dense layer with two inner dense layers.

4. Experiments
We first present a detailed analysis of the two datasets

most commonly used in the literature for examining re-
cent CCA variants: MNIST half matching and X-Ray Mi-
crobeam Speech data (XRMB). We then provide additional
experiments on the problem of image to sentence matching,
showing state of the art results on the Flickr8k, Flickr30k
and COCO datasets.

4.1. Comparison with published results

We follow the conventional way of evaluating the perfor-
mance of CCA variants and compute the sum of the correla-
tions of the top c shared (canonical) representation variables
found. The datasets used for this comparison are MNIST
and XRMB. In both MNIST and XRMB experiments, we
set λdecov = λW = λγ = 0.05. For training, we used
stochastic gradient descent with a learning rate of 0.0001
which was halved every 20 epochs. A momentum of 0.9 is
used and a tied dropout probability of 0.5.
MNIST half matching The MNIST handwritten digits
dataset [20] contains 60,000 images of handwritten digits
for training and 10,000 images for testing. Each image is
cut vertically into two halves, resulting in 392 features each.
The goal is to maximize the correlation of the top c = 50
canonical variables. The model used is composed of three
layers of size 392, 50 and 392 respectively, noted as 392-
50-392. The middle layer was taken as the output.
X-Ray Microbeam Speech data The XRMB [48] dataset
contains simultaneous acoustic and articulatory recordings.

The articulatory data is represented as a 112 dimensional
vector. The acoustic data are the MFCCs [25] for the same
frames, yielding a 273 dimensional vector at each point in
time. For benchmarking, 30,000 random samples are used
for training, 10,000 for cross-validation and 10,000 for test-
ing. The correlation is measured across the c = 112 top
correlated canonical variables. The same training config-
uration of the MNIST experiment was used for the XRMB
dataset. For XRMB, we tested our model using hidden layer
configuration of 560-280-112-680-1365.

Tab. 1 contains correlation comparisons on the MNIST
and XRMB datasets of six CCA variants besides our pro-
posed method. As can be seen, our method (“2WayNet”)
outperforms all literature methods by a large margin on the
XRMB dataset. On the MNIST dataset, in which the lit-
erature results are closer to the maximal value of 50, our
method is able to regain half of the remaining correlation.

Method MNIST XRMB
Regularized CCA [45] 28.0 16.9

DCCA [4] 39.7 92.9
RCCA [33] 44.5 104.5

DCCAE [47] 25.34 41.47
CorrNet [7] 48.07 95.01
NCCA [32] NA 107.9
2WayNet 49.15 110.18

Table 1: Comparison between various methods on the
XRMB and MNIST datasets. The reported values are the
sum of the correlations between the learned representations
of the two views. Following the literature, in these bench-
marks MNIST employs a 50D shared representation space,
and XRMB a 112D one.

4.2. Image annotation and search

We next evaluate the proposed model on the sentence-
image matching task. In this task, each dataset contains a set
of images and five matching sentences per image. For each
dataset, we test our model on two tasks, searching an im-
age given a query sentence and matching a sentence given
an image. We measure our performance on three datasets,
Flickr8k [14], Flickr30k [50] and COCO [23], each contain-
ing 8,000, 30,000 and 123,000 images respectively.

Images are presented by the representation layer of the
VGG network [39] as vectors of size 4096. Sentences are
represented using the published code of [19]. Among the
available text encodings, we employ the concatenation of
the Fisher Vector encoding (GMM) and the Fisher Vector
of the HGLMM distribution introduced in [19]. Each sen-
tence is thus represented as a 36,000D vector. Going from
the image to the much larger sentence representation, we
trained networks containing two conventional hidden lay-
ers of sizes 2000 and 3000 and an additional locally dense
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layer of 16000 neurons andm = 2 for Flickr30k and COCO
datasets. For Flickr8k, due to the relatively small dataset,
we used a dense layer of 4000 neurons. Correlation is used
as a similarity measure between images and sentences. To
this end we use the middle network representations from
each channels, resulting in a representation vector of size
3000.

The Flickr8k dataset is provided with training, valida-
tion, and test splits. For Flickr30K and COCO, no splits
are given, and we use the same splits used by [19]. λdeconv
is set to a value of 1/2, which almost eliminated all off-
diagonal covariances at the middle layer. The other param-
eters are set as in the MNIST and XRMB experiments.

Tab. 2 compare our results to the state-of-the-art meth-
ods on the image-sentence matching task. We also report
results that we computed for the RCCA method [33]. The
open implementations of the various deep CCA methods do
not seem to scale well enough for this benchmark. Our pro-
posed method achieves best performance almost across all
scores, especially in the image annotation task, where we
improved by a large margin for the three datasets, and espe-
cially when considering the top result (r@1).

4.3. Ablation analysis

We perform an ablation analysis aimed at isolating
the effect of the various architectural novelties suggested.
Experiments were conducted on the Flickr8k, Flickr30k,
MNIST and XRMB datasets. Each experiment uses the
baseline configuration used in previous experiments with
only one alternation.
Batch Normalization For this experiment, we used differ-
ent settings for the BN layer. The configuration settings
include: (1) without BN, (2) with conventional BN (be-
fore ReLU) without regularizing γ, (3) with post-ReLU BN,
without regularizing γ, (4) using BN before the ReLU with
λγ = 0.05, and (5) our proposed method: BN applied only
after ReLU with λγ = 0.05. Tab. 3 report the performance
of the various configurations in terms of correlation and the
mean variance of all features on the validation set.

As Tab. 3 shows, batch normalization has a profound ef-
fect on the network’s results. Results taken without batch
normalization were trained with lower learning rate, us-
ing higher learning rate prevented the training from con-
verging. We can also see that using the 1/γ regularization
term significantly increases the variance of the hidden rep-
resentation, which, in turn, stabilizes the training process
and improves correlation. The effect studied in Section 3.2
is clearly visible in the ablation study, positioning the BN
layer after the Leaky ReLU prevents an unbalance represen-
tations as can be seen by the difference in variances, which
increases the correlation of two representation significantly.
Tab. 4 contains r@1 results for the same experiments on the
Flickr8k dataset. As in Tab. 3 out suggested configuration

achieves the base recall rates.
Tied Dropout We trained the same base configuration as
described above. We tested our proposed method using a
conventional dropout instead of a tied dropout and remov-
ing dropout altogether. In all experiments, the dropout prob-
ability p was set at 0.5.

As can be seen, the performance drops when using the
conventional dropout instead of the proposed tied dropout
layer. The benefits of the tied dropout layer are most sig-
nificant on the large datasets Flickr8k and Flickr30k, where
over-fitting is likely. The shrinking effect discussed in Sec-
tion 3.5 is clearly visible and is manifested as low variance
of the output of the model based on conventional dropout,
compared to a much higher variance when using the tied
dropout.
Leaky ReLU We also tested the contribution of other pa-
rameters on the model’s performance. One of the major
benefits was using leaky ReLU non-linearity. Using con-
ventional ReLU resulted in large correlation loss of about
33% (1192 total correlation) for Flickr8k. Loss terms An-
other aspect we tested is the effect of various loss terms
on correlation and recall rates. Removing Lh term results
in a 31% (1230) decrease of correlation. This settles with
Lemma 2 which links the output’s correlation and Lh loss
term. While the Lh loss increases the output’s correlation,
the reconstruction loss terms Lx and Ly decreases the re-
sult’s correlation. Removing them both increases correla-
tion by 56% (2752). While the correlation produced be-
tween the two views is higher without the two reconstruc-
tion losses, the dimensions of each representation are highly
correlated resulting in a decrease of 87% in image search
and 91% in image annotation performance as measured by
recall@1: from the full method’s performance of 29.3 and
43.4 for the tasks of image search and image annotation to
4.0 and 3.9 respectively. Regularization The effect for Rγ
can be viewed in Tab. 3. Removing the Rdecov results in
a decrease of all measures. Image search r@1 and r@5 re-
sults decrease by 14% and 10% respectively and the image
annotation r@1 and r@5 results decrease by 10% and 8%
respectively. Moreover, the correlation is reduced by 4%.
Locally dense layer To test the effect of the proposed lo-
cally dense layer, we trained our model on Flickr30k with a
regular dense layer of the same size (16000 neurons) and
with a regular dense layer of half the size. Image an-
notation r@1(r@5) results degrade by 7%(3%) and image
search by 1%(1%) when using conventional 16000 neurons
dense layer. Using dense layer half the size results in a
drop of 13%(9%) for image annotation r@1(r@5) rates and
11%(8%) for image search recall rates r@1(r@5).
Parameter sensitivity: Fig. 2(a) shows the effect of differ-
ent leakiness coefficient values on the correlation as mea-
sured on the validation sets of the MNIST and XRMB data
sets. The results were obtained by training the network us-
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Model
Flickr8k Flickr30k COCO

Search Annotate Search Annotate Search Annotate
r@1 r@5 r@1 r@5 r@1 r@5 r@1 r@5 r@1 r@5 r@1 r@5

NIC [36] 19.0 NA 20.0 NA 17.0 NA 17.0 NA NA NA NA NA
SC-NLM [18] 12.5 37.0 18.0 40.9 16.8 42.0 23.0 50.7 NA NA NA NA
m-RNN [28] 11.5 31.0 14.5 37.2 22.8 50.7 35.4 63.8 29.0 42.2 41.0 73.0
m-CNN [26] 20.3 47.6 24.8 53.7 26.2 56.3 33.6 64.1 32.6 68.6 42.8 73.1
DCCA [49] 12.7 31.2 17.9 40.3 12.6 31.0 16.7 39.3 NA NA NA NA
BRNN [16] NA NA NA NA 15.2 37.7 22.2 48.2 27.4 60.2 38.4 69.9
RNN-FV [21] 23.2 53.3 31.6 61.2 27.4 55.9 35.9 62.5 30.2 65.0 40.9 75.0
VQA-A [24] 17.2 42.8 24.3 52.2 24.9 52.6 33.9 62.5 37.0 70.9 50.5 80.1
NLBD [46] NA NA NA NA 29.7 60.1 40.3 68.9 39.6 75.2 50.1 79.7
CCA [19] 21.3 50.1 31.0 59.3 23.5 52.8 35.0 62.1 25.1 59.8 39.4 67.9
RCCA [33] 18.7 31.1 11.7 19.2 22.7 34.2 28.3 48.2 NA NA NA NA
2WayNet 29.3 49.7 43.4 63.2 36.0 55.6 49.8 67.5 39.7 63.3 55.8 75.2

Table 2: The recall rates for the Flickr8k, Flickr30k and COCO image to sentence matching benchmarks. In image search,
we show the percent of correct matches for the top retrieval out of all test images (r@1 for search). In image annotation, given
a query image, fetching one of five matching sentences is considered a success. Recall rates for the top five (r@5) denote the
cases in which a successful match exists in any of the top five results. The experiments reported for regularized CCA, RCCA,
and our 2-way net all use the same sentence and image representation. Sentences are represented as the concatenation of the
GMM-FV and the HGLMM-FV representations of [19]. . Image is represented with the last dense connected of the CNN
used in [19].

Scenario Flickr8k Flickr30k MNIST XRMB
Corr Var x Var y Corr Var x Var y Corr Var x Var y Corr Var x Var y

Suggested method 1758 0.65 0.64 2135 0.41 0.43 49.15 1.32 1.27 110.18 1.08 1.06
No BN 1482 1.90 1.71 1562 1.38 1.40 13.14 0 0 25.58 0 0
before ReLU, λγ = 0 1313 0.66 0.44 1385 0.37 0.28 48.40 0.18 0.18 107.55 0.15 0.15
after ReLU, λγ = 0 1598 1.34 1.25 1655 0.73 0.74 48.98 0.38 0.37 109.42 0.40 0.39
before ReLU, λγ > 0 1423 0.33 0.21 1322 1.80 0.96 48.76 0.73 0.72 108.79 0.50 0.50
No Dropout 1091 0.34 0.33 1446 0.57 0.52 49.00 1.33 1.33 109.69 0.79 0.79
Conventional dropout 1557 0.17 0.17 1658 0.12 0.14 48.77 1.90 1.90 93.24 0.24 0.16

Table 3: Ablation study on the Flickr8k, Flickr30k, MNIST and XRMB datasets, testing various batch normalization (BN),
variance regularization and dropout options. We measure the variance in both views, X and Y (averaging the variance of all
dimensions), and the obtained correlation. The suggested method is to apply BN only after ReLU with λγ = 0.05 and to
employ tied dropout. All BN variants employ tied dropout with probability of 0.5. All dropout variants apply BN similarly
to the suggested method.

Scenario Search r@1 Annotate r@1
Suggested method 29.3 43.4
No BN 21.1 25.6
before ReLU, λγ = 0 26.9 39.6
after ReLU, λγ = 0 27.9 40.9
No Dropout 25.64 36.6
Conventional dropout 29.04 42.1

Table 4: Recall results on Flickr8k for the same experiments
as described at Tab. 3.

ing leakiness coefficients ranging between 0 and 0.7. As can
be seen, there is a large region of values that provide better
performance than the conventional zero-leakiness ReLU.
Fig. 2(b) shows the effect of the regularization weight λγ
that controls the learned variance of the BN layer. The value
used in our experiments seems to be beneficial and lies at a
relatively wide high-performance plateau.

5. Conclusions

In this paper, we present a method for linking paired
samples from two sources. The method significantly out-
performs all literature methods in the highly applicable and
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Figure 2: (a) The effect of the leakiness parameter on the MNIST and XRMB benchmarks, as measured on the validation set
using the sum of correlations divided by the dimension (in percent). The solid red line depicts the MNIST results; the dashed
black line depicts the XRMB results. (b) A similar plot showing the effect of coefficient λγ .

well studied domain of correlation analysis, including the
classical methods, their modern variants, and the recent
deep correlation methods. We are unique in that we em-
ploy a tied 2-way architecture, reconstructing , and unlike
most methods, we employ the Euclidean loss. In order to
promote an effective training, we introduce a series of con-
tributions that are aimed at maintaining the variance of the
learned representations. Each of these modifications is pro-
vided with an analysis that explains its role and together
they work hand in hand in order to provide the complete
architecture, which is highly accurate.

Our method is generic and can be employed in any com-
puter vision domain in which two data modalities are used.
In addition, our contributions could also help in training
univariate regression problems. In the literature, the Eu-
clidean loss is often combined with other losses [37, 51],
or replaced by an alternative loss [22] in order to mitigate
the challenges of training regression problems. Our vari-
ance injection method can be easily incorporated into any
existing network.

As future work, we would like to continue exploring the
use of tied 2-Way networks for matching views from dif-
ferent domains. In almost all of our trained networks, the
biases of the batch normalization layers in the solutions
tend to have very low values. These biases can probably be
eliminated altogether. In addition, in many encoder/decoder
schemes, layers are added gradually during training. It is
possible to adopt such a scheme to our framework, adding
hidden layers in the middle of the network one by one.
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