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Abstract

Learning on data represented with multiple views (e.g.,

multiple types of descriptors or modalities) is a rapidly

growing direction in machine learning and computer vi-

sion. Although effectiveness achieved, most existing algo-

rithms usually focus on classification or clustering tasks.

Differently, in this paper, we focus on unsupervised repre-

sentation learning and propose a novel framework termed

Autoencoder in Autoencoder Networks (AE2-Nets), which

integrates information from heterogeneous sources into an

intact representation by the nested autoencoder framework.

The proposed method has the following merits: (1) our

model jointly performs view-specific representation learn-

ing (with the inner autoencoder networks) and multi-view

information encoding (with the outer autoencoder network-

s) in a unified framework; (2) due to the degradation pro-

cess from the latent representation to each single view, our

model flexibly balances the complementarity and consis-

tence among multiple views. The proposed model is effi-

ciently solved by the alternating direction method (ADM),

and demonstrates the effectiveness compared with state-of-

the-art algorithms.

1. Introduction

Real-world data are usually described with multiple

modalities or multiple types of descriptors that are consid-

ered as multiple views. Basically, due to the diversity of

sensors or feature extractors, these different views are usu-

ally highly heterogeneous. For example, an image may be

described with color (e.g., color histogram) and texture de-

scriptors (e.g., SIFT [18], GIST [21], HOG [7]). In social

networks, there usually exist both link graph describing re-

lationships between different subjects and subject-specific

attributes [31, 28]. In medical image analysis [10], a sub-

ject may be associated with different types of medical im-

ages used to capture different characteristics of anatomical
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structures. Accordingly, plenty of approaches have been

proposed to jointly exploit multiple types of features [9] or

multiple modalities of data [26, 20].

Most existing multi-view learning algorithms focus on

classification [13, 4] or clustering [5, 16, 32]. Basically,

integrating different views into one comprehensive repre-

sentation is of vital importance for downstream tasks since

unified representation could be easily exploited by on-shelf

algorithms. Although it is important, jointly exploring mul-

tiple views is a long-standing challenge due to the complex

correlations underlying different views. The representative

way of learning a common representation is Canonical Cor-

relation Analysis (CCA) [14], which searches for two pro-

jections to map two views onto a low-dimensional com-

mon subspace where the linear correlation between the two

views is maximized. Then the learned representation can be

used for subsequent tasks (e.g., classification or clustering).

To address more complex correlations beyond linear case,

kernelized CCA (KCCA) [1] introduces kernel techniques.

Furthermore, Deep Canonical Correlation Analysis (DC-

CA) [2] proposes learning highly nonlinear mappings with

deep neural networks to search for a common space that

could maximize the correlations between two views. Be-

yond CCA-based methods, Partial Least Squares (PLS) re-

gression [25] regresses the samples from one view to anoth-

er and the flexible multi-view dimensionality co-reduction

algorithm (MDcR) [33] maximizes the correlations between

different views in kernel space.

Although effectiveness has been achieved on multi-view

learning, there are several main problems left for existing

algorithms. First, previous algorithms usually project dif-

ferent views onto a common space under the underlying

assumption that there exist sufficient correlations between

different views. However, in practice, correlation (consis-

tence) and independence (complementarity) are co-existing

and it is challenging to automatically balance them. Ac-

cordingly, existing algorithms either maximize the correla-

tions [2, 16] for consistence or maximize the independence

for complementarity [5]. Second, existing algorithms usual-

ly project each view onto a low-dimensional space and then
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combine all of them for subsequent tasks rather than learn

a common low-dimensional representation, which makes it

a two-step manner in representation learning. Therefore,

in this paper, we propose the Autoencoder in Autoencoder

Networks (AE2-Nets), which aims to automatically encode

intrinsic information from heterogeneous views into a com-

prehensive representation and adaptively balance the com-

plementarity and consistence among different views.

The key advantage of the proposed model lies in the join-

t view-specific encoding and multi-view encoding with a

novel nested autoencoder networks. The view-specific rep-

resentation encoded by the inner-AE networks is responsi-

ble for reconstructing the raw input, while the multi-view

representation encoded by the outer-AE networks can re-

construct the encoded representation by inner-AE network

of each single view. The main contributions of this paper

are summarized as follows:

• We propose a novel unsupervised multi-view represen-

tation learning framework - Autoencoder in Autoencoder

Networks (AE2-Nets) for heterogeneous data, which can

flexibly integrate multiple heterogeneous views into an in-

tact representation.

• The novel nested autoencoder networks could jointly per-

form view-specific representation learning and multi-view

representation learning - the inner autoencoder networks ef-

fectively extract information from each single view, while

the outer autoencoder networks model the degradation pro-

cess to encode intrinsic information from each single view

into a common intact representation.

• Extensive experimental results verify the effectiveness of

the proposed AE2-Nets on diverse benchmark datasets for

both classification and clustering tasks.

The remainder of the paper is organized as follows. Re-

lated algorithms, including multi-view learning and multi-

view representation learning are briefly reviewed in Section

2. Details of our proposed approach are presented in Sec-

tion 3. In Section 4, we present experimental results that

demonstrate the effectiveness of our model on a variety of

real-world datasets. Conclusions are drawn in Section 5.

2. Related Work

Learning based on data with multiple modalities or mul-

tiple types of features aims to conduct learning task by joint-

ly utilizing different views to exploit the complementarity,

and has attracted intensive attentions recently. For super-

vised learning, multimodal metric learning [34, 35] usual-

ly jointly learns multiple metrics for different modalities.

Hierarchical Multimodal Metric Learning (HM3L) [35] de-

composes the metric of each modality into a product of

two matrices: one is modality-specific, and the other is

shared by all the modalities. Beyond linear case, Fisher-

HSIC Multi-View Metric Learning (FISH-MML) [34] en-

forces the class separability with Fisher discriminant analy-

sis (FDA) within each view, and maximizes the consistence

in kernel space among multiple views by using Hilbert-

Schmidt Independence Criteria (HSIC). Under the proba-

bilistic framework, the method [30] learns latent represen-

tations and distance metric from multiple modalities with

the multi-wing harmonium (MWH) learning. There are also

some methods [22, 23] aggregating decisions from multiple

classifiers, where each classifier is learned based upon one

single modality. Under specific assumptions, theoretical re-

sults [11, 6] have advocated the advantages of multi-view

integration for subsequent tasks. For clustering, based on

spectral clustering, co-regularized [16] and co-training [15]

based algorithms enforce clustering hypothesis of different

views to be consistent. Recently, the multi-view subspace

clustering methods [5, 12] relate different data points in a

self-representing manner on the original view and simulta-

neously constrain these subspace representations of differ-

ent views to exploit complementary information. There are

some multi-view methods focusing on other topics, e.g., di-

mensionality reduction [33].

Unsupervised multi-view representation learning is a

rather challenging problem since there is no class infor-

mation guiding the learning process. The main stream of

methods are CCA-based, which searches for projections to

maximize the correlation of two views. Due to the ability of

handling nonlinear correlations, the kernel extension of C-

CA has been widely used for integrating multi-view features

or dimensionality reduction. The Deep CCA [2] aims to

learn two deep neural networks (DNN) to maximize canon-

ical correlation across two views. Under the deep learn-

ing framework, the autoencoder based model [20] learns a

compact representation best reconstructing the input. Dif-

ferent from CCA, based on HSIC, a flexible multi-view di-

mensionality co-reduction method [33] is proposed which

explores the correlations within each view independently,

and maximizes the dependence among different views with

kernel matching jointly. Inspired by deep learning, semi-

nonnegative matrix factorization is extended to obtain the

hierarchical semantics from multi-view data in a layer-wise

manner [36]. The learned representations of all views are

enforced to be the same in the final layer.

3. Autoencoder in Autoencoder Networks

In this section, we present the AE2-Nets for learning

the intact representations with a set of multi-view samples

X = {X(1), ...,X(V )}, where X(v) ∈ R
dv×n is the feature

matrix of the vth view with V , n and dv being the number

of views, number of samples and dimensionality of feature

space for the vth view, respectively.

3.1. Proposed Approach

The key goal of AE2-Nets (as presented in Fig. 1) is to

recover an intact latent space which can well reveal the un-
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Figure 1: Overview of the Autoencoder in Autoencoder Networks (AE2-Nets). The key components are the nested autoen-

coder networks, which are composed of the inner AE networks (shown as the circle with green arrows) for view-specific

encoding and the outer AE networks (shown as the circle with red arrows) for multi-view encoding. View-specific encod-

ing automatically extracts features from each view while multi-view encoding ensures the intact latent representation can be

mapped back to each view with degradation process. Accordingly, the intrinsic information from multiple views are encoded

into the learned latent intact representation. The learned latent representation could be used for subsequent tasks, and the

task-specific goal could flexibly be incorporated into our framework as well (shown in gray dash lines).

derlying structure of data across multiple views. The pro-

posed model jointly learns compact representation for each

single view and the intact multi-view representation which

can be mapped to reconstruct each single view. Then, the

intrinsic information of each view are automatically extract-

ed with the inner-AE networks, and the degradation pro-

cess involved in the outer-AE networks ensures the intrin-

sic information from each view are encoded into the latent

representation. Note that, due to the common intact repre-

sentation and associated non-linear networks, more general

correlations among different views are addressed.

For the inner networks, the reasons of using AE network-

s are: (1) since there is no supervised information guid-

ing the learning process, we employ AE networks instead

of general neural networks (e.g., for classification) to en-

sure the intrinsic information to be preserved; (2) for con-

ventional multi-view representation learning models, learn-

ing processes are usually based on the pre-extracted fea-

tures, which is risky due to the high-dimensionality and

possible noise involved. The introduced encoding network-

s could extract intrinsic information to be encoded into

the latent multi-view representation instead of the original

high-dimensional/noisy features; (3) with variants of AE

(e.g., convolutional autoencoder for images), our model has

the potential of performing representation learning directly

based on raw data.

For simplicity, the inner-AE network for the vth

view is denoted as f(X(v);Θ(v)
ae ), where Θ(v)

ae =

{W
(m,v)
ae ,b

(m,v)
ae }Mm=1 is the parameter set for all layers

with M + 1 being the number of layers of the inner-AE

network, i.e., consisting of M layers of nonlinear transfor-

mations. Specifically, the first M/2 hidden layers encode

the input as a new representation, and the last M/2 lay-

ers decode the representation to reconstruct the input. Let

z
(0,v)
i = x

(v)
i ∈ R

dv denote an input feature vector, then the

output of the mth layer is

z
(m,v)
i = a(W(m,v)

ae z
(m−1,v)
i + b(m,v)

ae ),

m = 1, 2, · · · ,M,
(1)

where z
(m,v)
i ∈ R

d(m,v) and d(m,v) is the number of

nodes at the mth layer for the vth view. W
(m,v)
ae ∈

R
d(m,v)×d(m−1,v) and b

(m,v)
ae ∈ R

d(m,v) denote the weights

and bias associated with the mth layer, respectively. a(·)
is a nonlinear activation function. Then, given the feature

matrix X(v) = [x
(v)
1 ,x

(v)
2 , · · · ,x

(v)
n ] ∈ R

dv×n for the vth

view, the corresponding reconstruct representation is denot-

ed as

Z(M,v) = [z
(M,v)
1 , z

(M,v)
2 , · · · , z(M,v)

n ], (2)

where z
(M,v)
i is the reconstructed representation for the ith

sample in the vth view. To obtain the low-dimensional rep-

resentation Z(M
2 ,v), we should minimize the following re-
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construction loss

min
{Θ

(v)
ae }V

v=1

1

2

V
∑

v=1

∥

∥

∥
X(v) − Z(M,v)

∥

∥

∥

2

F
. (3)

After obtaining the low-dimensional view-specific rep-

resentation Z(M
2 ,v), we focus on encoding them into one

intact common representation, H ∈ R
k×n, where k is the

dimensionality of the intact space, to preserve intrinsic in-

formation from different views. To this end, the degra-

dation networks involved in the outer-AE networks real-

ize the assumption that each single view could be recon-

structed from the comprehensive (or intact) common rep-

resentation. The fully connected neural networks (FC-

NN) are employed to model the degradation process as

shown in Fig. 1(c). Specifically, we map H onto the view-

specific representation Z(M
2 ,v) with degradation network

g(H;Θ
(v)
dg ), where Θ

(v)
dg = {W

(l,v)
dg ,b

(l,v)
dg }Ll=1 with L+ 1

being the number of layers of degradation network. Ac-

cordingly, we have G(0,v) = H as the input of the degra-

dation networks and G(l,v) = [g
(l,v)
1 , · · · ,g

(l,v)
n ], with

g
(l,v)
i = a(W

(l)
dgg

(l−1,v)
i + b

(l,v)
dg ). Then, the objective of

degradation networks is defined as

min
{Θ

(v)
dg

}V
v=1

1

2

V
∑

v=1

∥

∥

∥
Z(M

2 ,v) −G(L,v)
∥

∥

∥

2

F
. (4)

In our model, we jointly learn new representation for

each view (with inner-AE networks) and seek the intact la-

tent representation (with outer-AE networks) in a unified

framework, and then the objective of our AE2-Nets is in-

duced as

min
{Θ

(v)
ae ,Θ

(v)
dg

}V
v=1,H

1

2

V
∑

v=1

(

∥

∥

∥
X(v) − Z(M,v)

∥

∥

∥

2

F

+ λ
∥

∥

∥
Z(M

2 ,v) −G(L,v)
∥

∥

∥

2

F

)

,

(5)

where λ > 0 is a tradeoff factor to balance the within-view

reconstruction and cross-view reconstruction (from the la-

tent representation to each single view). For all views,

G(L,v)s are derived from the common latent representa-

tion H. The proposed model automatically learns view-

specific representations and nonlinearly encodes them into

the multi-view intact representation. It is noteworthy that

although the proposed AE2-Nets is an unsupervised repre-

sentation learning model, it is easy to extend AE2-Nets to

meet specific tasks (e.g., classification or clustering). More-

over, our model is applicable for the data with more than

two views.

3.2. Optimization

There are multiple blocks of variables in our problem,

and the objective function of our AE2-Nets is not jointly

convex for all these variables. Therefore, we optimize our

objective function by employing Alternating Direction Min-

imization (ADM) [17] strategy. To adopt the ADM strate-

gy, the optimization is cycled over the following three steps:

updating the view-specific auto-encoder networks, updating

the degradation networks and updating the latent represen-

tation H by fixing the other blocks of variables. The opti-

mization for each step is as follows:

• Update View-Specific AE Networks. To update the

view-specific AE network for the vth view, we should min-

imize the following loss function

L(v)
ae ({Θ

(v)
ae }

V
v=1) =

1

2

n
∑

i=1

(

∥

∥

∥
x
(v)
i − z

(M,v)
i

∥

∥

∥

2

+ λ
∥

∥

∥
z
(M

2 ,v)
i − g

(L,v)
i

∥

∥

∥

2
)

.
(6)

By applying the chain rule to calculate the gradient of E-

q. (6) w.r.t. W
(m,v)
ae and b

(m,v)
ae , we have























∂L
(v)
ae

∂W
(m,v)
ae

= (∆(m,v) + λΛ(m,v))(z
(m−1,v)
i )T ,

∂L
(v)
ae

∂b
(m,v)
ae

= ∆(m,v) + λΛ(m,v),

(7)

where ∆(m,v) is defined as

∆(m,v) =
{

−(x
(v)
i − z

(m,v)
i )⊙ a′(y

(m,v)
i ), m = M,

(W
(m+1,v)
ae )T∆(m+1,v) ⊙ a′(y

(m,v)
i ), otherwise,

(8)

and Λ(m,v) is given by

Λ(m,v) =










(W
(m+1,v)
ae )TΛ(m+1,v) ⊙ a′(y

(m,v)
i ), m ≤ M

2 − 1,

(z
(m

2 ,v)
i − g

(L,v)
i )⊙ a′(y

(m
2 ,v)

i ), m = M
2 ,

0,m ≥ M
2 + 1.

(9)

where a′(·) is the derivative of the activation function a(·),

⊙ denotes the element-wise multiplication, and y
(m,v)
i =

W
(m,v)
ae z

(m−1,v)
i +b

(m,v)
ae . Then we can update the param-

eters {W
(m,v)
ae ,b

(m,v)
ae }

M

m=1 with gradient descent as























W(m,v)
ae = W(m,v)

ae − µ
∂L

(v)
ae

∂W
(m,v)
ae

,

b(m,v)
ae = b(m,v)

ae − µ
∂L

(v)
ae

∂b
(m,v)
ae

,

(10)

where µ > 0 is the learning rate which is usually set to a

small positive value, e.g., 0.001.

•Update Degradation Networks. Similar to the update

strategy for the view-specific AE networks, we can obtain

2580



the gradient of Eq. (4) w.r.t. W
(l,v)
dg and b

(l,v)
dg for the vth

view as

∂L
(v)
dg

∂W
(l,v)
dg

= Υ(l,v)(g
(l−1,v)
i )T ,

∂L
(v)
dg

∂b
(l,v)
dg

= Υ(l,v), (11)

where Υ(l,v) is defined as

Υ(l,v) =

{

−(z
(M

2 ,v)
i − g

(l,v)
i )⊙ a′(q

(l,v)
i ), l = L

(W
(l+1,v)
dg )TΥ(l+1,v) ⊙ a′(q

(l,v)
i ), otherwise

(12)

where q
(l,v)
i = W

(l,v)
dg g

(l−1,v)
i + b

(l,v)
dg . Accordingly, we

can update the weights and bias with the following rule


























W
(l,v)
dg = W

(l,v)
dg − µ

∂L
(v)
dg

∂W
(l,v)
dg

,

b
(l,v)
dg = b

(l,v)
dg − µ

∂L
(v)
dg

∂b
(l,v)
dg

.

(13)

•Update Latent Representation H. To update the intact

latent representation H, we follow the similar way as up-

dating W
(1,v)
dg . That is to say, we should optimize Eq. (4)

w.r.t. H. Accordingly, we can calculate the gradient as

∂Lh

∂hi

=

V
∑

v=1

α(v)(g
(L,v)
i − z

(M
2 ,v)

i )⊙

L
∏

l=1

a′(q
(l,v)
i )⊙W

(l,v)
dg

with Lh =
V
∑

v=1

α(v)

2

∥

∥

∥
z
(M

2 ,v)
i − g

(L,v)
i

∥

∥

∥

2

,

(14)

where α(v) is a tradeoff factor to control the belief degree

for the vth view. In practice, we can set α(1) = · · · = α(V )

when there is no prior about the importance of each view.

For clarification, we summarize the optimization procedure

in Algorithm 1.

3.3. Connection with CCA/Matrix Factorization

CCA can be interpreted as a generative model [29, 3].

With a latent representation, h, the observations x(1) =
P(1)h + ǫ

(1) and x(2) = P(2)h + ǫ
(2), where P(1) and

P(2) are linear mappings, ǫ
(1) and ǫ

(2) are independent

Gaussian noise. For our AE2-Nets, the underlying model

is f(x(v);Θ(v)
ae ) = g(h;Θ

(v)
dg ) + ε

(v), where f(·) encodes

original features of each view into a compact representa-

tion and g(·) degrades the intact representation into each

single view. ε
(v) is the error for the vth view. By fixing

the features instead of learning by autoencoder networks,

and replacing g(h;Θ
(v)
dg ) with linear projections, our mod-

el will be degraded into: min{P(v),H}

∑V

v=1

∑n

i=1 ||x
(v)
i −

P(v)hi||
2. This is similar to the generative model of CCA,

and is also equivalent to learning a common representation

under the matrix factorization framework.

Algorithm 1: Optimization algorithm of AE2-Nets

Input: multi-view data X = {X(v)}Vv=1,

dimensionality k of latent representation H.

Initialize randomly {Θ(v)
ae ,Θ

(v)
dg }

V
v=1 and H.

while not converged do

for each of V views do
update the parameters of view-specific AE

networks with Eq. (10);

end

for each of V views do
update the parameters of the degradation

networks with Eq. (13);

end

update H with Eq. (14);

end

Output: latent representation H.

4. Experiments

In the experiments, we compare the proposed AE2-

Nets with state-of-the-art multi-view representation learn-

ing methods on real-world datasets with multiple views,

and evaluate the results on both clustering and classification

tasks with commonly used evaluation metrics.

4.1. Experimental Settings

Datasets. We conduct the comparisons on the following

datasets: handwritten1 contains 2000 images of 10 class-

es from number 0 to 9. Two different types of descriptors,

i.e., pix (240 pixel averages in 2 x 3 windows) and fac (216

profile correlations), are used as two views. Caltech101-

72 contains a subset of images from Caltech101. There are

7 categories selected with 1474 images: faces, motorbikes,

dollar-bill, garfield, snoopy, stop-sign, and windsor-chair.

The HOG and GIST descriptors are used. ORL3 contains

10 different images for each of 40 distinct subjects. COIL-

20 4 contains 1440 images of 20 object categories. Each

image is normalized to 32 × 32 with 256 gray levels per

pixel. For ORL and COIL-20, intensity of gray level and

Gabor descriptors are used. Caltech-UCSD Birds (CUB)
5 contains 11788 bird images associated with text descrip-

tions [24] from 200 different categories. We extract 1024-

dimensional features based on images with GoogLeNet, and

300-dimensional features based on text.

Compared methods. We compared the proposed AE2-

Nets with the following methods:

(1) FeatConcate: This method simply concatenates differ-

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
2http://www.vision.caltech.edu/Image Datasets/Caltech101/
3https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
4http://www.cs.columbia.edu/CAVE/software/softlib/
5http://www.vision.caltech.edu/visipedia/CUB-200.html
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Table 1: Performance comparison on clustering task.

Datasets Methods ACC NMI F score RI

handwritten

FeatConcate 76.04 ± 2.28 75.70 ± 1.44 70.96 ± 2.05 93.93 ± 0.42

CCA [14] 66.43 ± 7.62 69.62 ± 6.06 62.05 ± 7.70 91.83 ± 1.79

DCCA [2] 66.26 ± 0.16 66.01 ± 0.45 59.05 ± 0.39 91.39 ± 0.06

DCCAE [27] 69.17 ± 1.02 66.96 ± 0.91 60.50 ± 1.10 91.77 ± 0.21

MDcR [33] 76.72 ± 2.77 76.68 ± 0.93 71.93 ± 2.22 94.11 ± 0.48

DMF-MVC [36] 71.86 ± 4.25 73.09 ± 3.23 66.66 ± 4.69 92.85 ± 1.13

Ours 81.52 ± 1.62 71.39 ± 1.50 68.57 ± 1.86 93.68 ± 0.38

Caltech101

FeatConcate 47.23 ± 0.22 57.19 ± 0.61 52.15 ± 0.28 73.45 ± 0.16

CCA [14] 45.37 ± 0.09 50.53 ± 0.03 52.15 ± 0.19 73.27 ± 0.09

DCCA [2] 56.71±10.50 57.61 ± 6.78 62.32±12.75 76.34 ± 6.86

DCCAE [27] 62.11 ± 2.78 64.38 ± 4.11 65.43 ± 4.24 79.31 ± 2.06

MDcR [33] 46.51 ± 0.67 56.43 ± 0.56 51.55 ± 0.56 73.27 ± 0.30

DMF-MVC [36] 55.75 ± 5.67 45.52 ± 2.28 55.67 ± 5.50 73.43 ± 2.33

Ours 66.46 ± 4.55 60.60 ± 1.93 73.42 ± 4.91 83.14 ± 2.33

ORL

FeatConcate 61.10 ± 1.51 79.28 ± 0.70 47.03 ± 2.21 97.10 ± 0.25

CCA [14] 56.98 ± 2.06 76.03 ± 0.79 45.13 ± 1.83 97.32 ± 0.09

DCCA [2] 59.68 ± 2.04 77.84 ± 0.83 47.72 ± 2.05 97.42 ± 0.13

DCCAE [27] 59.40 ± 2.20 77.52 ± 0.86 46.71 ± 2.22 97.39 ± 0.14

MDcR [33] 61.70 ± 2.19 79.45 ± 1.20 48.48 ± 2.59 97.28 ± 0.22

DMF-MVC [36] 65.38 ± 2.86 82.87 ± 1.26 52.01 ± 3.43 97.29 ± 0.30

Ours 68.85 ± 2.11 85.73 ± 0.78 59.93 ± 1.31 97.94 ± 0.11

COIL20

FeatConcate 67.13 ± 4.09 79.94 ± 1.69 64.81 ± 4.05 96.24 ± 0.60

CCA [14] 58.68 ± 1.34 70.64 ± 0.47 53.13 ± 0.90 95.18 ± 0.10

DCCA [2] 63.73 ± 0.78 76.02 ± 0.50 58.76 ± 0.53 95.60 ± 0.06

DCCAE [27] 62.72 ± 1.40 76.32 ± 0.66 57.56 ± 1.15 95.27 ± 0.30

MDcR [33] 64.25 ± 2.98 79.44 ± 1.37 63.60 ± 2.57 96.11 ± 0.29

DMF-MVC [36] 53.92 ± 5.89 72.36 ± 2.11 46.39 ± 4.97 92.56 ± 1.46

Ours 73.42 ± 1.90 82.55 ± 1.03 69.38 ± 1.92 96.86 ± 0.22

CUB

FeatConcate 73.80 ± 0.11 71.49 ± 0.24 61.07 ± 0.18 91.98 ± 0.04

CCA [14] 45.82 ± 1.58 46.59 ± 0.98 39.93 ± 1.27 87.44 ± 0.31

DCCA [2] 54.50 ± 0.29 52.53 ± 0.19 45.84 ± 0.31 88.61 ± 0.06

DCCAE [27] 66.70 ± 1.52 65.76 ± 1.36 58.22 ± 1.18 91.27 ± 0.24

MDcR [33] 73.68 ± 3.32 74.49 ± 0.75 65.72 ± 1.37 92.75 ± 0.44

DMF-MVC [36] 37.50 ± 2.45 37.82 ± 2.04 28.95 ± 1.54 85.52 ± 0.26

Ours 77.75 ± 1.63 78.61 ± 1.62 70.96 ± 2.63 93.92 ± 0.58

ent types of features from multiple views.

(2) CCA: Canonical Correlation Analysis (CCA) [14] maps

multiple types of features onto one common space by find-

ing linear combinations of variables that maximally corre-

lation, and then combines these projected low-dimensional

features together.

(3) DCCA: Deep Canonical Correlation Analysis (DCCA)

[2] extends CCA using deep neural networks, and concate-

nates projected low-dimensional features of multiple views.

(4) DCCAE: Deep Canonically Correlated AutoEncoders

(DCCAE) [27] consists of two autoencoders and maximizes

the canonical correlation between the learned representa-

tions, and then combines these projected low-dimensional

features together.

(5) MDcR: Multi-view Dimensionality co-Reduction (MD-

cR) [33] applies the kernel matching to regularize the de-

pendence across multiple views and projects each view on-

to a low-dimensional space. Then these projected low-

dimensional features are concatenated together.

(6) DMF-MVC: Deep Semi-NMF for MVC (DMF-MVC)

[36] utilizes a deep structure through semi-nonnegative ma-

trix factorization to seek a common feature representation

with consistent knowledge for multi-view data.

Evaluation metrics. To comprehensively compare AE2-

Nets with others, we adopt four different metrics to evalu-

ate the clustering quality, i.e., Accuracy, Normalized Mutu-

al Information (NMI), F-score and Rand Index (RI), where

different metrics favor different properties of clustering.
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Table 2: Performance comparison on classification task.

Datasets Methods G80%/P20% G70%/P30% G50%/P50% G20%/P80%

handwritten

FeatConcate 89.60 ± 1.40 88.97 ± 0.73 88.87 ± 0.44 85.68 ± 0.53

CCA [14] 93.78 ± 0.82 93.47 ± 0.93 93.28 ± 0.66 91.12 ± 0.74

DCCA [2] 95.18 ± 0.55 94.62 ± 0.64 94.35 ± 0.46 92.79 ± 0.51

DCCAE [27] 95.78 ± 0.46 95.10 ± 0.64 94.79 ± 0.58 92.63 ± 0.54

MDcR [33] 92.33 ± 0.73 91.55 ± 0.39 91.41 ± 0.68 88.11 ± 0.61

DMF-MVC [36] 94.68 ± 0.71 93.72 ± 0.60 93.33 ± 0.46 88.23 ± 0.57

Ours 96.93 ± 0.71 96.55 ± 0.66 95.88 ± 0.71 93.38 ± 0.49

Caltech101

FeatConcate 87.88 ± 0.67 87.47 ± 0.56 87.17 ± 0.49 87.10 ± 0.45

CCA [14] 91.10 ± 0.96 90.07 ± 1.03 89.82 ± 0.49 89.08 ± 0.71

DCCA [2] 92.12 ± 0.58 91.46 ± 0.70 91.30 ± 0.48 90.73 ± 0.38

DCCAE [27] 91.58 ± 1.02 90.91 ± 0.75 90.54 ± 0.44 89.44 ± 0.43

MDcR [33] 90.14 ± 0.74 89.45 ± 0.76 88.95 ± 0.41 88.46 ± 0.35

DMF-MVC [36] 85.51 ± 1.05 84.67 ± 0.82 81.88 ± 0.73 74.19 ± 0.99

Ours 93.77 ± 1.35 92.98 ± 1.37 92.49 ± 0.72 91.36 ± 0.69

ORL

FeatConcate 79.13 ± 2.36 74.58 ± 1.32 68.00 ± 2.23 48.28 ± 2.27

CCA [14] 77.13 ± 3.96 73.83 ± 4.89 67.95 ± 2.77 49.00 ± 1.84

DCCA [2] 83.25 ± 2.71 78.92 ± 1.93 71.15 ± 1.86 51.69 ± 1.75

DCCAE [27] 81.62 ± 2.95 80.00 ± 1.47 72.80 ± 2.04 51.25 ± 1.90

MDcR [33] 92.00 ± 1.58 90.83 ± 2.08 83.35 ± 1.08 57.38 ± 2.08

DMF-MVC [36] 93.13 ± 1.21 91.75 ± 1.64 85.45 ± 1.85 56.44 ± 2.50

Ours 97.88 ± 1.19 96.00 ± 2.18 92.20 ± 1.18 70.16 ± 2.54

COIL20

FeatConcate 78.50 ± 2.30 76.42 ± 2.33 67.05 ± 2.33 48.69 ± 2.08

CCA [14] 90.50 ± 1.46 88.64 ± 0.95 86.86 ± 0.76 78.94 ± 0.87

DCCA [2] 90.96 ± 1.24 90.48 ± 1.56 88.65 ± 0.84 83.35 ± 0.60

DCCAE [27] 92.54 ± 0.70 91.88 ± 1.44 90.35 ± 0.58 84.11 ± 1.10

MDcR [33] 91.11 ± 0.80 90.29 ± 1.05 87.63 ± 1.12 79.46 ± 1.39

DMF-MVC [36] 95.25 ± 1.06 94.76 ± 0.77 92.07 ± 0.61 82.96 ± 1.03

Ours 96.11 ± 1.10 95.55 ± 0.87 93.25 ± 0.73 88.85 ± 0.72

CUB

FeatConcate 82.50 ± 3.04 81.50 ± 3.13 80.80 ± 1.41 78.33 ± 0.99

CCA [14] 63.92 ± 3.14 61.39 ± 2.56 59.07 ± 2.32 53.06 ± 2.12

DCCA [2] 65.67 ± 2.85 64.83 ± 1.83 62.37 ± 1.58 58.44 ± 2.92

DCCAE [27] 77.00 ± 2.94 74.56 ± 2.74 72.60 ± 2.52 67.35 ± 3.84

MDcR [33] 83.08 ± 3.43 82.44 ± 3.08 81.53 ± 1.67 78.58 ± 1.65

DMF-MVC [36] 60.08 ± 2.79 58.56 ± 2.84 55.30 ± 1.90 49.60 ± 1.38

Ours 85.83 ± 2.94 84.00 ± 1.41 82.67 ± 1.41 80.17 ± 1.83

There are different definitions for accuracy for evaluating

clustering, and the accuracy used in our experiments is de-

fined as follows: given a sample xi, its cluster label and

class label (ground-truth) are denoted by ri and si, respec-

tively, then we have

ACC =

∑n

i=1 δ(si,map(ri))

n
, (15)

where δ(x, y) = 1 when x = y, otherwise δ(x, y) = 0.

map(ri) is the permutation map function, which maps the

cluster labels into class labels and the best map can be ob-

tained by Kuhn-Munkres algorithm. We employ the stan-

dard classification accuracy and conduct experiments with

different partitions of gallery and probe sets. For each of

these metrics, a higher value indicates a better clustering

performance.

After obtaining the learned representation based on mul-

tiple views, we evaluate the learned representation of each

method on clustering and classification tasks. For cluster-

ing, we employ k-means algorithm, while for classification,

k-nearest neighbours (kNN) algorithm is used. The reason

for using k-means and kNN lies in the fact that these two

algorithms are both simple and can be used based on Eu-

clidean distance to reflect the quality of representation. For

all the compared methods, we tune all the parameters to the

best performance.

In our model, the fully connected layer with tanh(·) be-

ing the activation function is employed for the inner-AE

networks and degradation networks, where the numbers of

layers for them are empirically set as 5 and 3. We use

ℓ2-norm as regularization for parameters on all network-
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(1) View 1 (2) View 2 (3) Ours

(a) handwritten

(1) View 1 (2) View 2 (3) Ours

(b) Caltech101

Figure 2: Visualization of original features for each single

view and the latent representation with t-SNE [19].
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Figure 3: Parameter tuning (a) and convergence curve (b).

s and the weight decay is empirically set to 0.0001. We

select the dimensionality of latent representation H from

{50, 100, 150, 200, 250, 300} and tune the tradeoff param-

eter λ from {0.1, 0.2, · · · , 1.0}. For simplicity, we set

α1 = · · · = αV = α = 1 on all datasets. Due to random-

ness involved, we run all algorithms 30 times and report the

mean performances and standard deviations in terms of dif-

ferent metrics.

For clustering, the detailed results of different method-

s are shown in Table 1. Obviously, our algorithm basically

outperforms all the other methods on all datasets in terms of

ACC. Since CCA only seeks linear projections, it generally

performs rather unpromising. As expected, benefitting from

nonlinearity, DCCA and DCCAE perform much better than

CCA, which also demonstrates the rationality of our algo-

rithm to model complex correlations based on neural net-

works instead of linear way. Moreover, although DCCAE

and MDcR perform favorably on Caltech101 and handwrit-

ten, respectively, it is not promising on other datasets.

For classification, we divide data into differen-

t proportions of training and test sets, denoted as

Gtrain ratio/Ptest ratio, where G and P indicate “gallery

set” and “probe set”, respectively. Table 2 shows the com-

parison results for each Gtrain ratio/Ptest ratio. Accord-

ing to Table 2, the accuracy obtained from our AE2-Nets

is more promising than those of comparisons on different

partitions. It is observed that CCA-based methods do not

always outperform FeatConcate. One possible reason is

that overemphasizing the correlation (consistence) may har-

m the complementarity across different views. The superior

performance further validates the advantages of AE2-Nets.

To further investigate the improvement, we visualize o-

riginal features of each single view and our learned intact

representation with t-SNE [19]. As shown in Fig. 2, the

clustering structure is better reflected by the learned latent

representation.

Parameter tuning and convergence. The hyperparam-

eter λ is essential to control the fusion of multiple views. As

shown in Fig. 3(a), we present the parameter tuning on the

handwritten dataset and show the clustering performance of

our algorithm with different values for hyperparameter λ.

For each value, we repeat 5 times and plot the means and

standard deviations in terms of NMI. It is observed that the

promising performance could be expected when the value of

λ is within a wide range. To demonstrate the convergence

of our optimization algorithm, we conduct the convergence

experiment as shown in Fig. 3(b). Typically, the objective

value decreases fast in the beginning of iterations and our

optimization algorithm converges within 100 iterations on

these datasets in practice.

5. Conclusion

In this paper, we have presented an unsupervised repre-

sentation learning model for heterogeneous data. Unlike ex-

isting multi-view representation learning models mapping

different views onto a common space, the proposed model

AE2-Nets jointly learns the representation of each view and

encodes them into an intact latent representation with a nov-

el nested autoencoder framework. In this way, our method

can flexibly encode intrinsic information from each view.

Experimental results of AE2-Nets outperform the compared

state-of-the-art methods on real-world datasets. For future

directions, we will consider extending the current AE2-Nets

for end-to-end representation learning. For example, we

can design convolutional AE neural networks for images

or graphs [8] for the inner-AE networks to automatically

extract features for real-world heterogeneous data.
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