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Lecture Schedule

Classes Tuesday Lectures Thursday Lectures
Week 1 Course introduction Multimodal applications and datasets
9/1&9/3 e  Research and technical challenges e  Research tasks and datasets
e«  Course syllabus and requirements e  Team projects
Week 2 Basic concepts: neural networks Basic concepts: network optimization
9/8 &9/10 e Language, visual and acoustic e  Gradients and backpropagation
. Loss functions and neural networks . Practical deep model optimization
Week 3 Visual unimodal representations Language unimodal representations
9/15 &9/17 e  Convolutional kernels and CNNs e  Gated networks and LSTM
. Residual network and skip connection . Backpropagation Through Time
Week 4 Multimodal representation learning Coordinated representations
9/22 & 9/24 e  Multimodal auto-encoders «  Deep canonical correlation analysis
. Multimodal joint representations . Non-negative matrix factorization
Week 5 Multimodal alignment Alignment and representation
9/29 & 10/1 e Explicit - dynamic time warping «  Self-attention models
e Implicit - attention models e  Multimodal transformers
Week 6 First project assignment (live working sessions instead of lectures)
10/6 & 10/8

First project assignment

Language Technologies Institute

Presentations due Friday 10/9
Reports due Sunday 10/11

Peer feedback due Fridax 10/16




Lecture Schedule

Classes

Tuesday Lectures

Thursday Lectures

Week 7
10/13 & 10/15

Week 8
10/20 & 10/22

Week 9
10/27 & 10/29

Week 10
11/3 & 11/5

Week 11
11/10 & 11/12

Alignment and translation

e  Module networks

e  Connectionist temporal classification
Discriminative graphical models

« Conditional random fields

«  Continuous and fully-connected CRFs
Reinforcement learning

Markov decision process

e Qlearning and policy gradients
Fusion and co-learning

. Multi-kernel learning and fusion

. Few shot learning and co-learning

Probabilistic graphical models
« Dynamic Bayesian networks
e« Coupled and factor HMMs

Neural Generative Models
o Variational auto-encoder

. Generative adversarial networks

Multimodal RL

« Deep Qlearning

«  Multimodal applications

New research directions

. Recent approaches in multimodal ML

Mid-term project assignment (live working sessions instead of lectures)

Language Technologies Institute

Midterm project assignment
Presentations due Friday 11/13
Reports due Sunday 11/15
Peer feedback due Friday 11/20




Lecture Schedule

Classes Tuesday Lectures Thursday Lectures
Week 12 Embodied Language Grounding Multi-lingual representations
11/17 & 11/19 «  Connecting Language to Action « Tentative topic
e Guest lecture: Yonatan Bisk e  Guest lecture: To be confirmed

Week 13
11/24 & 11/26

Week 14
12/1& 12/3

Week 15
12/8 & 12/10

Thanksgiving week (no lectures)

Learning to connect text and images Bias and fairness
e Discourse approaches, text & images e Computational ethics
e  Guest lecture: Malihe Alikhani e  Guest lecture: Yulia Tsvetkov

Final project assignment (live working sessions instead of lectures)

Final project assignment

Presentations due Friday 12/11
Reports due Sunday 12/13
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amazon
GPU $50 Coupons - AWS webservices™

® First, create an account on AWS Educate portal:
https://aws.amazon.com/education/awseducate/

= Your account will need to be backed by your credit card
Be sure to setup billing alarms and monitor your spending!

= Refrain from including AWS credential in code/github

® To get your coupon, use your AndrewlID and
the URL posted on Piazza

.
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https://aws.amazon.com/education/awseducate/

9,

GPU $50 Coupons - GCP Google Cloud platform

= Coupons can be redeemed at this address:
https://console.cloud.google.com/education

Be sure to setup billing alarms and monitor your spending!
# Refrain from including GCP credential in code/github

= To get your coupon, use your AndrewlD and
the URL posted on Piazza
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Lecture Objectives

= Quick recap
= Coordinated multimodal representations

= Multivariate statistical analysis
= Basic concepts (multivariate, covariance,...)

= Canonical Correlation Analysis

= Deep Correlation Networks
= Deep CCA, DCCA-AutoEncoder

= Multi-view clustering
= Nonnegative Matrix Factorization

= Multi-view latent intact space
=  Autoencoder in Autoencoder networkds
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Quick Recap
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Multimodal Representation Learning

Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal
concepts are closely projected.

d Deep Multimodal
Boltzmann machines

(@@ - - - @® @) softmax

Y

OO ---000)

[QQ.‘.‘.QQ] [ X ]

00 - 00 | ]
Text Image
X Y
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Multimodal Representation Learning
Learn (unsupervised) a joint Text
representation between multiple 00 00 | |
modalities where similar unimodal f f
concepts are closely projected. 00 - 00 | . ]

0 Deep Multimodal \/

Boltzmann machines 000 - 9000

QO Stacked Autoencoder /\

00 ---00) (O ---00)

@9 - 90 00 ---00]

Text Image
X Y
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal

concepts are closely projected. D)
(D)
d Deep Multimodal :
Boltzmann machines ©
d Stacked Autoencoder ®
09 - 00 0O - -00]

d Encoder-Decoder
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple e.g. Sentiment
modalities where similar unimodal (@@ - @®) softmax
concepts are closely projected. )

Bimodal e

d Deep Multimodal
Boltzmann machines

[ Stacked Autoencoder h,@e -00) @0.-00h,
Q Encoder-Decoder @0 00 @009
Text Image

 Tensor Fusion representation

How Can We Learn Better Representations?

Languabb I\‘\_-IIIIUI\.I&I\‘-.) iUV




Coordinated
Multimodal
Representations



Coordinated multimodal embeddings

» |nstead of projecting to a joint space enforce the similarity between
unimodal embeddings

Repres.1 <=  Repres 2

I I

Modality 1 Modality 2
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Coordinated Multimodal Representations

Learn (unsupervised) two or more

coordinated representations from

multiple modalities. A loss function

IS defined to bring closer these .
multiple representations. Similarity metric | cosine

/\ distance)

00---00] (00---00

00 00
00 --00) (
Text Image
X Y
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Coordinated Multimodal Embeddings

Input t1
Image features s Text: a parrot rides a tricycle

Language Technologies Institute




Multimodal Vector Space Arithmetic
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Multimodal Vector Space Arithmetic

Nearest images
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Structured coordinated embeddings

» |nstead of or in addition to similarity add alternative

entity

skis Derso_n\\ dog
womaf person walking . _ Supervised Information _
\ \ SEVES 10 SR
woman walking -1-11-11 |0 1. . .00 |
R } Binary | | !
lking her d ;| Code | | > |
woman skiin woman walking her aog e . 1-11-1! 1 g0 ......10 |
g ..‘_’1'111"10......013

[Vendrov et al., Order-Embeddings of [Jiang and Li, Deep Cross-Modal Hashing]
Images and Language, 2016]
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Multivariate
Statistical Analysis
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Multivariate Statistical Analysis

“Statistical approaches to understand the
relationships in high dimensional data”

= Example of multivariate analysis approaches:
= Multivariate analysis of variance (MANOVA)
= Principal components analysis (PCA)
= Factor analysis
= Linear discriminant analysis (LDA)
= Canonical correlation analysis (CCA)

Language Technologies Institute



Random Variables

Definition: A variable whose possible values are
numerical outcomes of a random phenomenon.

O Discrete random variable is one which may take on only a
countable number of distinct values such as 0,1,2,3,4,...

d Continuous random variable i1s one which takes an infinite
number of possible values.

Examples of random variables:

« Someone’s age Discrete or
« Someone’s height continuous?
 Someone’s weight Correlated?

Language Technologies Institute




Definitions

Given two random variables X and Y
Expected value probability-weighted average of all possible values
u=E[X]= ExiP(xi)

[
» If same probability for all observations x;, then same as arithmetic mean

Variance measures the spread of the observations

o2 = Var(X) = E[(X — )X — )] = E[XX] If data is

centered
» Variance is equal to the square of the standard deviation o

Covariance measures how much two random variables change together
cov(X,Y) = E[(X — u)(Y — )] = E[XY]

Language Technologies Institute



Definitions

Pearson Correlation measures the extent to which two
variables have a linear relationship with each other

cov(X,Y)
var(X)var(Y)

pxy = corr(X,Y) =

Language Technologies Institute




Pearson Correlation Examples

0.8 0.4 a -0.4 -0.8 -1
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Definitions

Multivariate (multidimensional) random variables

(aka random vector)
X = [Xl,XZ,XS, ...,XM]

Y = [Yl, Y2 Y3, ..., YN]
Covariance matrix generalizes the notion of variance
Zx = Zxx = var(X) = E[(X — E[XD(X — E[X])"] = E[XX"]

Cross-covariance matrix generalizes the notion of covariance

Zxy = cov(X,Y) = E[(X — E[XD(Y — E[Y])'] = E[XY"]

Language Technologies Institute



Definitions

Multivariate (multidimensional) random variables

(aka random vector)
X = [Xl,XZ,XS, ...,XM]

Y =[YLvsvs ... YN
Covariance matrix generalizes the notion of variance

Zx = Zxx = var(X) = E[(X — E[XD(X — E[X])"] = E[XX"]
Cross-covariance matrix generalizes the notion of covariance

rcov(Xy,Yy) cov(X,,Yy) - cov(Xy,Yy)

Sxy = cov(X,Y) = cov(Xy, 12) COU(}:(Z'Yz) COU(X:M;YZ)

_COU(Xl, YN) COU(Xz,YN) COU(XM, YN)—

30
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Definitions — Matrix Operations

Trace is defined as the sum of the elements on the main diagonal

of any matrix X
n

tr(X) = z Xij

=1

Language Technologies Institute



Principal component analysis

PCA converts a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated

variables called principal components
= Eigenvectors are orthogonal towards each other and have
length one
= The first couple of eigenvectors explain the most of the
variance observed in the data
= Low eigenvalues indicate little loss of information if omitted

Language Technologies Institute




Eigenvalues and Eigenvectors

Eigenvalue decomposition

If A IS an nxn matrix, do there exist nonzero vectors X

in R" such that Ax is a scalar multiple of x?

» (The term eigenvalue is from the German
word Eigenwert, meaning “proper value”)

Eigenvalue equation:

AX = AX

£—"5

Eigenvector Igenvalue

A: an nxn matrix
A. a scalar (could be zero)
X: a nonzero vector in R"

Geometric Interpretation
y

AX = AX

» X

Language Technologies Institute



Singular Value Decomposition (SVD)

= SVD expresses any matrix A as

A = USVT

= The columns of U are eigenvectors of AA?, and
the columns of V are eigenvectors of ATA.

AATlli — Sizlli
ATAVl' = Sizvi

Language Technologies Institute



Canonical
Correlation Analysis
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Multi-view Learning

audio features at time 1 video features at time 1

Language Technologies Institute




Canonical Correlation Analysis

“canonical’: reduced to the simplest or clearest
schema possible

@ Learn two linear projections, one 1t ,
for each view, that are maximally
correlated: < ,.-F‘(
. projection oka
(u*,v*) = argmax corr(H,, H,) H, / . H,
o @0 00 @9 .00
= argmax corr(u’ X, v'Y) U v
wv rrex ]
Text Image
X Y
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Correlated Projection

Learn two linear projections, one for each view,
that are maximally correlated:

(u*,v*) = argmax corr(uf X, v'Y)

u,v
AERN vl
SREE =

Two views X, Y where same instances have the same color

Language Technologies Institute



Canonical Correlation Analysis

Learn two linear projections, one for each view,
that are maximally correlated:

(u*,v*) = argmax
u,v

= argmax
u,v

= argmax
u,v

= argmax
u,v

Language Technologies Institute

corr(uX, v'Y)

cov(u'X,v'Y)
var(u X)var(w?Y)

ul XyTv

Vul XXTuvvTYYTv

uTZva

\/uTZXXu\/szl(yv

39

/vvhere

Yyy = cov(X,Y) = XYT

ux =0 puy=20

.

If both X,Y have 0 mean

~

J




Canonical Correlation Analysis

We want to learn multiple projection pairs (u )X, v;Y):

uinExy v

(i Vi) = S T T
()Y(0) \/u(i)zxxu(i)\/v(i)zyyv(i)

We want these multiple projection pairs to be orthogonal
(“canonical”) to each other:

u{l)Zva(]) = uz})szv(i) =0 for i :/:]

|UszV| — tT(UZXyV) where U = [ll(l),ll,(z),..., u(k)]
and V = [v(1), V(2. --, V(i)

Language Technologies Institute



Canonical Correlation Analysis

tr(UTEyyV
(U*,V*) = argmax U 2x V)
UV JUTZxxUJVTZy vV

@ Since this objective function is invariant to scaling, we
can constraint the projections to have unit variance:

Ul yU=1 VIZpV=I
Canonical Correlation Analysis:
maximize:  tr(UTZxyV)

subjectto:  UTZyxU = VIEyyV = I, u;yExyv(;) = 0

fori #j

Language Technologies Institute



Canonical Correlation Analysis

maximize:  tr(UTZxyV)

subjectto:  UTEZyxU = VI EyyV = Lu(;yExyv;) = 0

fori #j
1 0 O A4 0 0
y y O 1 O 0 A, O
__________ o T |wlo 01 0 0 2
0 0 A 0 0 1

Language Technologies Institute



Canonical Correlation Analysis

maximize: |tr(UTZxyV)

SUbjeCt to: UTZXXU = VTZny =1, U(])nyv(l) =0

fori # j

How to solve it? » Lagrange Multipliers!
Lagrange function

L=tr(UTZxyV) + a(UTZyyU — 1) + B(VIZyyV — I)

| | | - aL oL
» And then find stationary points of L: P 0 pr 0

ZxxZxyZyy ExyU = AU
ZYYZXYZXXZXYV AV where A = 4afs

43
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Canonical Correlation Analysis

maximize:  tr(UTZyy V)

subjectto:  UTZyxU =V EyyV = Lu(;Zxyv(;) = 0

[ # ]

]
~1/2 )

C 1/2

T 23/ SxyEny

(U, V") = (24 1/2USVD:Z 1/2VSVD) )

» Can solve these eigenvalue - I
equations with Singular Value Igenvalues

Decomposition (SVD) /]4Eigenvectors
(

Eigenvalue SyxZxy Iy ygyU = AU

equations izt owily V=2V where 1 = 4af
\

44
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Canonical Correlation Analysis

maximize:  tr(UTZxyV)

SUbjeCt to: U ZXXU V Zny =1, U(])nyv(l) =0

. fori # j

@ Linear projections : "f
maximizing correlation 5| A ‘
. . p projection of X'K
@ Orthogonal projections H, / \ H,
@ Unit variance of the 00 .00 (0000
projection vectors U |4
@0 00 00 - 00
Text Image
X Y
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Exploring Deep
Correlation Networks
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Deep Canonical Correlation Analysis

Same objective function as CCA:

argmax corr (H o H y)
V.UW, W,

And need to compute gradients:

aCOTT(Hx’ Hy) Hx O Ql}"‘ . O Q O Q * "‘ i/@ Q Hy
au 90 - 00 ..
w,| W,
ocorr(H,, H,) 00 - 00 @0 -
1% Text Image
Andrew et al., ICML 2013 X Y
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Deep Canonical Correlation Analysis

Training procedure:

X' Y’

1. Pre-train the models Text Image
parameters using 00 ...00) (C0...00]
denoising autoencoders

00 ---00
H,(©0..-00] 00.--00JH,
Ul V
90 - 00 e
w,| W,
900 - 00 .
Text Image
Andrew et al., ICML 2013 X Y

Language Technologies Institute



Deep Canonical Correlation Analysis

Training procedure:

1. Pre-train the models
parameters using
denoising autoencoders

2. Optimize the CCA
objective functions using g _
large mini-batches or
full-batch (L-BFGS)

Andrew et al., ICML 2013
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Deep Canonically Correlated Autoencoders (DCCAE)

Jointly optimize for DCCA and
autoencoders loss functions

> A trade-off between multi-view
correlation and reconstruction
error from individual views

Wang et al., ICML 2015
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Deep Correlational Neural Network

1. Learn a shallow CCA autoencoder (similar to 1
layer DCCAE model)

2. Use the learned weights for initializing the
autoencoder layer

3. Repeat procedure

| | | | | | |
w """" W v
| ] | b | || | b b | | | | b
w v
b
w v
| | | b | | b b | | | | b
w M wf T‘-"
| | | | | | |
step-1 step-2 step-3

Chandar et al., Neural Computation, 2015
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Multivariate Statistics

= Multivariate analysis of variance (MANOVA)
= Principal components analysis (PCA)

= Factor analysis

* Linear discriminant analysis (LDA)

= Canonical correlation analysis (CCA)

= Correspondence analysis

= Canonical correspondence analysis

= Multidimensional scaling

= Multivariate regression

= Discriminant analysis

Language Technologies Institute



Multi-View
Clustering
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Data Clustering

Clustering definition: partition a set of data samples such that
similar samples are grouped, and dissimilar samples are divided

How to discover groups in your data?

K-mean is a simple clustering algorithm
based on competitive learning

» |terative approach

o Assign each data point to one
cluster (based on distance metric)

o Update cluster centers

o Until convergence [ o ]
« “Winner takes all” Image

Language Technologies Institute




“Soft” Clustering: Nonnegative Matrix Factorization

Given: Nonnegative n x m matrix M (all entries = 0)

4 ™ [ G ]

N Y, L

Want: Nonnegative matrices F (n xr) and G (r x m),
s.t. X = FG.

» easier to interpret
» provide better results in information retrieval, clustering

Language Technologies Institute



Semi-NMF and Other Extensions

SVD: X1~ FiGi

NMF: X, ~ F.GT

Semi-NMF: X, ~ F,.G"

Convex-NMF: Xi~ X W, GI

Ding et al., TPAMI2015
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Deep Semi-NMF Model

Squint

f~-means

) ) Zy | Identity |
k-means Z Expression ‘___——-———“/’1 Features
> \ 2 : .
‘ Pose / Features ‘ H3
Features Hz
L S ) 7.7,7
H1 Zl Z 1Z2 17273

Trigerous et al., TPAMI 2015
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Multi-View Clustering

Learn data partitioning from multiple views (modalities)

Views: different sources in diverse domains or obtained
from various feature collectors or modalities

Example: Multiple views in computer vision - LBP, SIFT, HOG

00 - 00) @0 00 @0 00
Audio Text Image

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018

58
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Principles of Multi-View Clustering

Two important principles:

(1) Consensus principle: maximize consistency across
multiple distinct views

(2) Complementarity principle: multiple views needed
to get more comprehensive and accurate descriptions

One data object

. __-" View 1

~__~ View 2

A = C

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018

59
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Multi-view subspace clustering

Definition: learns a unified feature representation from
all the view subspaces by assuming that all views share
this representation

Subspace 1
@
\
Subspace 2 LatentspTl
| \J Unified
repre sentation

l SUbSIﬁeé’,’l///
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Enforcing Data Clustering in Deep Networks

How to enforce data clustering in our
(multimodal) deep learning
algorithms?
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Deep Matrix Factorization

B _
User-provided
Tags

Learning Data

Visual Features

airplane
color
sky

i ..
trailer
old
building
richmond
~ 7

( beach ) Weakly-Supervised
sunset Image-Tag Relevance
private —
nge

-
Images Associated with
User-provided Tags

—— e e - - - - -

|
|
I
|
|
|
|
|
|
|
|
I
I
I
1
|
|
|
|
|
|
/

- e - - -y
R R —
\ 4

Li and Tang, MMML 2015
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Other Multi-View Clustering Approaches

Graph-based clustering: search for a fusion graph (or
network) across all views and then perform clustering

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018

63
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Other Multi-View Clustering Approaches

Co-training: bootstraps the clustering of different views
by using the learning knowledge from other views

Knowledge
Knowledge

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018

Trainer 1

Cooperation

Trainer 2

64
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Auto-Encoder In
Auto-Encoder Network
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Deep Canonically Correlated Autoencoders (DCCAE)

X' Y’
Text Image
@0 .. 00 CI°E ]

@0 .. 00

———
-
—’—
—’—
-
-

ViewH,  TSs~l_
H, - 0@ 00---00)H,
Ul 14
00 - 00 (
Wy \ , Wy
rrean
Text Image
X

Y
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Multi-view Latent “Intact” Space

Xu et al., TPAMI 2015

Given multiple views z; from the same “object”:

View Space Z;

57 aseds MmaiIp

View Space Z,

Latent Intact Space

1) There is an “intact” representation which is complete and not damaged

2) The views z; are partial (and possibly degenerated) representations
of the intact representation
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Auto-Encoder in Auto-Encoder Network

Zhang et al., CVPR 2019

Reconstructed Text Latent Intact Reconstructed Image
Z(M,1) _ Z(M2)
Representation
00 - - 00 ..
f ] GV H G2 [ | <
o0 ¢ wE (9 @@ ! A\
| Olilee @ oo @
S | et © e o | o | ] el {
\/O% . ro . . i . . i . OS
. O] © | o O] S
e glE o 3 oYy A2
@0 ©: -~ @ “ " 9 (00-.-00)Z
Degradation Degradation |
) G network network ( T ]
,O ® T Total Loss:
LA BN ) 1 2 \
min - X () — z(Mw)
Input Text el .e}v._, ; ( H ! Input Image
xX@® Latent variable +)\Hz(%’”)—G(L’” o) x(2)
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