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Abstract

Top-down visual attention mechanisms have been used

extensively in image captioning and visual question answer-

ing (VQA) to enable deeper image understanding through

fine-grained analysis and even multiple steps of reasoning.

In this work, we propose a combined bottom-up and top-

down attention mechanism that enables attention to be cal-

culated at the level of objects and other salient image re-

gions. This is the natural basis for attention to be con-

sidered. Within our approach, the bottom-up mechanism

(based on Faster R-CNN) proposes image regions, each

with an associated feature vector, while the top-down mech-

anism determines feature weightings. Applying this ap-

proach to image captioning, our results on the MSCOCO

test server establish a new state-of-the-art for the task,

achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5

and 36.9, respectively. Demonstrating the broad applica-

bility of the method, applying the same approach to VQA

we obtain first place in the 2017 VQA Challenge.

1. Introduction

Problems combining image and language understand-

ing such as image captioning [4] and visual question an-

swering (VQA) [12] continue to inspire considerable re-

search at the boundary of computer vision and natural lan-

guage processing. In both these tasks it is often necessary

to perform some fine-grained visual processing, or even

multiple steps of reasoning to generate high quality out-

puts. As a result, visual attention mechanisms have been

widely adopted in both image captioning [33, 27, 47, 45]

and VQA [11, 28, 44, 46, 49]. These mechanisms improve

performance by learning to focus on the regions of the im-

age that are salient and are currently based on deep neural

network architectures.

∗Work performed while interning at Microsoft.

Figure 1. Typically, attention models operate on CNN features cor-

responding to a uniform grid of equally-sized image regions (left).

Our approach enables attention to be calculated at the level of ob-

jects and other salient image regions (right).

In the human visual system, attention can be focused

volitionally by top-down signals determined by the cur-

rent task (e.g., looking for something), and automatically

by bottom-up signals associated with unexpected, novel or

salient stimuli [3, 6]. In this paper we adopt similar termi-

nology and refer to attention mechanisms driven by non-

visual or task-specific context as ‘top-down’, and purely vi-

sual feed-forward attention mechanisms as ‘bottom-up’.

Most conventional visual attention mechanisms used in

image captioning and VQA are of the top-down variety.

Taking as context a representation of a partially-completed

caption output, or a question relating to the image, these

mechanisms are typically trained to selectively attend to the

output of one or more layers of a convolutional neural net

(CNN). However, this approach gives little consideration to

how the image regions that are subject to attention are deter-

mined. As illustrated conceptually in Figure 1, the resulting
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input regions correspond to a uniform grid of equally sized

and shaped neural receptive fields – irrespective of the con-

tent of the image. To generate more human-like captions

and question answers, objects and other salient image re-

gions are a much more natural basis for attention [10, 35].

In this paper we propose a combined bottom-up and top-

down visual attention mechanism. The bottom-up mech-

anism proposes a set of salient image regions, with each

region represented by a pooled convolutional feature vec-

tor. Practically, we implement bottom-up attention using

Faster R-CNN [32], which represents a natural expression

of a bottom-up attention mechanism. The top-down mecha-

nism uses task-specific context to predict an attention distri-

bution over the image regions. The attended feature vector

is then computed as a weighted average of image features

over all regions.

We evaluate the impact of combining bottom-up and top-

down attention on two tasks. We first present an image cap-

tioning model that takes multiple glimpses of salient im-

age regions during caption generation. Empirically, we find

that the inclusion of bottom-up attention has a significant

positive benefit for image captioning. Our results on the

MSCOCO test server establish a new state-of-the-art for the

task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9,

21.5 and 36.9. respectively (outperforming all published

and unpublished work at the time). Demonstrating the

broad applicability of the method, we additionally present

a VQA model using the same bottom-up attention features.

Using this model we obtain first place in the 2017 VQA

Challenge, achieving 70.3% overall accuracy on the VQA

v2.0 test-standard server. Code, models and pre-computed

image features are available from the project website1.

2. Related Work

A large number of attention-based deep neural networks

have been proposed for image captioning and VQA. Typ-

ically, these models can be characterized as top-down ap-

proaches, with context provided by a representation of a

partially-completed caption in the case of image caption-

ing [33, 27, 47, 45], or a representation of the question in

the case of VQA [11, 28, 44, 46, 49]. In each case attention

is applied to the output of one or more layers of a CNN,

by predicting a weighting for each spatial location in the

CNN output. However, determining the optimal number of

image regions invariably requires an unwinnable trade-off

between coarse and fine levels of detail. Furthermore, the

arbitrary positioning of the regions with respect to image

content may make it more difficult to detect objects that are

poorly aligned to regions and to bind visual concepts asso-

ciated with the same object.

Comparatively few previous works have considered ap-

1http://www.panderson.me/up-down-attention

plying attention to salient image regions. We are aware

of two papers. Jin et al. [18] use selective search [41]

to identify salient image regions, which are filtered with

a classifier then resized and CNN-encoded as input to an

image captioning model with attention. The Areas of At-

tention captioning model [30] uses either edge boxes [50]

or spatial transformer networks [17] to generate image fea-

tures, which are processed using an attention model based

on three bi-linear pairwise interactions [30]. In this work,

rather than using hand-crafted or differentiable region pro-

posals [41, 50, 17], we leverage Faster R-CNN [32], es-

tablishing a closer link between vision and language tasks

and recent progress in object detection. With this approach

we are able to pre-train our region proposals on object

detection datasets. Conceptually, the advantages should

be similar to pre-training visual representations on Ima-

geNet [34] and leveraging significantly larger cross-domain

knowledge. We additionally apply our method to VQA, es-

tablishing the broad applicability of our approach.

3. Approach

Given an image I , both our image captioning model and

our VQA model take as input a possibly variably-sized set

of k image features, V = {v1, ...,vk},vi ∈ R
D, such that

each image feature encodes a salient region of the image.

The spatial image features V can be variously defined as the

output of our bottom-up attention model, or, following stan-

dard practice, as the spatial output layer of a CNN. We de-

scribe our approach to implementing a bottom-up attention

model in Section 3.1. In Section 3.2 we outline the architec-

ture of our image captioning model and in Section 3.3 we

outline our VQA model. We note that for the top-down at-

tention component, both models use simple one-pass atten-

tion mechanisms, as opposed to the more complex schemes

of recent models such as stacked, multi-headed, or bidirec-

tional attention [46, 16, 20, 28] that could also be applied.

3.1. Bottom­Up Attention Model

The definition of spatial image features V is generic.

However, in this work we define spatial regions in terms of

bounding boxes and implement bottom-up attention using

Faster R-CNN [32]. Faster R-CNN is an object detection

model designed to identify instances of objects belonging

to certain classes and localize them with bounding boxes.

Other region proposal networks could also be trained as an

attentive mechanism [31, 25].

Faster R-CNN detects objects in two stages. The first

stage, described as a Region Proposal Network (RPN), pre-

dicts object proposals. A small network is slid over features

at an intermediate level of a CNN. At each spatial loca-

tion the network predicts a class-agnostic objectness score

and a bounding box refinement for anchor boxes of multi-

ple scales and aspect ratios. Using greedy non-maximum
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Figure 2. Example output from our Faster R-CNN bottom-up at-

tention model. Each bounding box is labeled with an attribute class

followed by an object class. Note however, that in captioning and

VQA we utilize only the feature vectors – not the predicted labels.

suppression with an intersection-over-union (IoU) thresh-

old, the top box proposals are selected as input to the second

stage. In the second stage, region of interest (RoI) pooling

is used to extract a small feature map (e.g. 14×14) for each

box proposal. These feature maps are then batched together

as input to the final layers of the CNN. The final output of

the model consists of a softmax distribution over class la-

bels and class-specific bounding box refinements for each

box proposal.

In this work, we use Faster R-CNN in conjunction with

the ResNet-101 [13] CNN. To generate an output set of im-

age features V for use in image captioning or VQA, we take

the final output of the model and perform non-maximum

suppression for each object class using an IoU threshold.

We then select all regions where any class detection prob-

ability exceeds a confidence threshold. For each selected

region i, vi is defined as the mean-pooled convolutional

feature from this region, such that the dimension D of the

image feature vectors is 2048. Used in this fashion, Faster

R-CNN effectively functions as a ‘hard’ attention mecha-

nism, as only a relatively small number of image bounding

box features are selected from a large number of possible

configurations.

To pretrain the bottom-up attention model, we first ini-

tialize Faster R-CNN with ResNet-101 pretrained for clas-

sification on ImageNet [34]. We then train on Visual

Genome [21] data. To aid the learning of good feature

representations, we add an additional training output for

predicting attribute classes (in addition to object classes).

To predict attributes for region i, we concatenate the mean

pooled convolutional feature vi with a learned embedding

of the ground-truth object class, and feed this into an addi-

tional output layer defining a softmax distribution over each

attribute class plus a ‘no attributes’ class.

The original Faster R-CNN multi-task loss function con-

tains four components, defined over the classification and

bounding box regression outputs for both the RPN and the

final object class proposals respectively. We retain these

components and add an additional multi-class loss compo-

nent to train the attribute predictor. In Figure 2 we provide

some examples of model output.

3.2. Captioning Model

Given a set of image features V , our proposed caption-

ing model uses a ‘soft’ top-down attention mechanism to

weight each feature during caption generation, using the

existing partial output sequence as context. This approach

is broadly similar to several previous works [33, 27, 45].

However, the particular design choices outlined below

make for a relatively simple yet high-performing baseline

model. Even without bottom-up attention, our captioning

model achieves performance comparable to state-of-the-art

on most evaluation metrics (refer Table 1).

At a high level, the captioning model is composed of two

LSTM [15] layers using a standard implementation [9]. In

the sections that follow we will refer to the operation of the

LSTM over a single time step using the following notation:

ht = LSTM(xt,ht−1) (1)

where xt is the LSTM input vector and ht is the LSTM

output vector. Here we have neglected the propagation of

memory cells for notational convenience. We now describe

the formulation of the LSTM input vector xt and the output

vector ht for each layer of the model. The overall caption-

ing model is illustrated in Figure 3.

3.2.1 Top-Down Attention LSTM

Within the captioning model, we characterize the first

LSTM layer as a top-down visual attention model, and the

6079



second LSTM layer as a language model, indicating each

layer with superscripts in the equations that follow. Note

that the bottom-up attention model is described in Sec-

tion 3.1, and in this section its outputs are simply consid-

ered as features V . The input vector to the attention LSTM

at each time step consists of the previous output of the lan-

guage LSTM, concatenated with the mean-pooled image

feature v̄ = 1

k

∑
i vi and an encoding of the previously

generated word, given by:

x1

t = [h2

t−1
, v̄,WeΠt] (2)

where We ∈ R
E×|Σ| is a word embedding matrix for a vo-

cabulary Σ, and Πt is one-hot encoding of the input word

at timestep t. These inputs provide the attention LSTM

with maximum context regarding the state of the language

LSTM, the overall content of the image, and the partial cap-

tion output generated so far, respectively. The word embed-

ding is learned from random initialization without pretrain-

ing.

Given the output h1

t of the attention LSTM, at each time

step t we generate a normalized attention weight αi,t for

each of the k image features vi as follows:

ai,t = wT
a tanh (Wvavi +Whah

1

t ) (3)

αt = softmax (at) (4)

where Wva ∈ R
H×V , Wha ∈ R

H×M and wa ∈ R
H are

learned parameters. The attended image feature used as in-

put to the language LSTM is calculated as a convex combi-

nation of all input features:

v̂t =

K∑

i=1

αi,tvi (5)

3.2.2 Language LSTM

The input to the language model LSTM consists of the at-

tended image feature, concatenated with the output of the

attention LSTM, given by:

x2

t = [v̂t,h
1

t ] (6)

Using the notation y1:T to refer to a sequence of words

(y1, ..., yT ), at each time step t the conditional distribution

over possible output words is given by:

p(yt | y1:t−1) = softmax (Wph
2

t + bp) (7)

where Wp ∈ R
|Σ|×M and bp ∈ R

|Σ| are learned weights

and biases. The distribution over complete output se-

quences is calculated as the product of conditional distri-

butions:

p(y1:T ) =
T∏

t=1

p(yt | y1:t−1) (8)

Figure 3. Overview of the proposed captioning model. Two LSTM

layers are used to selectively attend to spatial image features

{v1, ...,vk}. These features can be defined as the spatial output

of a CNN, or following our approach, generated using bottom-up

attention.

3.2.3 Objective

Given a target ground truth sequence y∗
1:T and a captioning

model with parameters θ, we minimize the following cross

entropy loss:

LXE(θ) = −

T∑

t=1

log(pθ(y
∗
t | y∗

1:t−1
)) (9)

For fair comparison with recent work [33] we also re-

port results optimized for CIDEr [42]. Initializing from the

cross-entropy trained model, we seek to minimize the neg-

ative expected score:

LR(θ) = −Ey1:T∼pθ
[r(y1:T )] (10)

where r is the score function (e.g., CIDEr). Following the

approach described as Self-Critical Sequence Training [33]

(SCST), the gradient of this loss can be approximated:

∇θLR(θ) ≈ −(r(ys
1:T )− r(ŷ1:T ))∇θ log pθ(y

s
1:T ) (11)

where ys
1:T is a sampled caption and r(ŷ1:T ) defines the

baseline score obtained by greedily decoding the current

model. SCST (like other REINFORCE [43] algorithms) ex-

plores the space of captions by sampling from the policy

during training. This gradient tends to increase the proba-

bility of sampled captions that score higher than the score

from the current model.

In our experiments, we follow SCST but we speed up

the training process by restricting the sampling distribution.

Using beam search decoding, we sample only from those

captions in the decoded beam. Empirically, we have ob-

served when decoding using beam search that the resulting

beam typically contains at least one very high scoring cap-

tion – although frequently this caption does not have the
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Figure 4. Overview of the proposed VQA model. A deep neural network implements a joint embedding of the question and image features

{v1, ...,vk} . These features can be defined as the spatial output of a CNN, or following our approach, generated using bottom-up attention.

Output is generated by a multi-label classifier operating over a fixed set of candidate answers. Gray numbers indicate the dimensions of

the vector representations between layers. Yellow elements use learned parameters.

highest log-probability of the set. In contrast, we observe

that very few unrestricted caption samples score higher than

the greedily-decoded caption. Using this approach, we

complete CIDEr optimization in a single epoch.

3.3. VQA Model

Given a set of spatial image features V , our proposed

VQA model also uses a ‘soft’ top-down attention mecha-

nism to weight each feature, using the question represen-

tation as context. As illustrated in Figure 4, the proposed

model implements the well-known joint multimodal em-

bedding of the question and the image, followed by a pre-

diction of regression of scores over a set of candidate an-

swers. This approach has been the basis of numerous pre-

vious models [16, 20, 38]. However, as with our captioning

model, implementation decisions are important to ensure

that this relatively simple model delivers high performance.

The learned non-linear transformations within the net-

work are implemented with gated hyperbolic tangent acti-

vations [7]. These are a special case of highway networks

[36] that have shown a strong empirical advantage over tra-

ditional ReLU or tanh layers. Each of our ‘gated tanh’ lay-

ers implements a function fa : x ∈ R
m → y ∈ R

n with

parameters a = {W,W ′, b, b′} defined as follows:

ỹ = tanh (Wx+ b) (12)

g = σ(W ′x+ b′) (13)

y = ỹ ◦ g (14)

where σ is the sigmoid activation function, W,W ′ ∈ R
n×m

are learned weights, b, b′ ∈ R
n are learned biases, and ◦ is

the Hadamard (element-wise) product. The vector g acts

multiplicatively as a gate on the intermediate activation ỹ.

Our proposed approach first encodes each question as the

hidden state q of a gated recurrent unit [5] (GRU), with each

input word represented using a learned word embedding.

Similar to Equation 3, given the output q of the GRU, we

generate an unnormalized attention weight ai for each of

the k image features vi as follows:

ai = wT
a fa([vi, q]) (15)

where wT
a is a learned parameter vector. Equation 4 and

Equation 5 (neglecting subscripts t) are used to calculate the

normalized attention weight and the attended image feature

v̂. The distribution over possible output responses y is given

by:

h = fq(q) ◦ fv(v̂) (16)

p(y) = σ(Wo fo(h)) (17)

Where h is a joint representation of the question and the

image, and Wo ∈ R
|Σ|×M are learned weights.

Due to space constraints, some important aspects of our

VQA approach are not detailed here. For full specifics of

the VQA model including a detailed exploration of archi-

tectures and hyperparameters, refer to Teney et al. [37].

4. Evaluation

4.1. Datasets

4.1.1 Visual Genome Dataset

We use the Visual Genome [21] dataset to pretrain our

bottom-up attention model, and for data augmentation when

training our VQA model. The dataset contains 108K images

densely annotated with scene graphs containing objects, at-

tributes and relationships, as well as 1.7M visual question

answers.

For pretraining the bottom-up attention model, we use

only the object and attribute data. We reserve 5K images

for validation, and 5K images for future testing, treating the

remaining 98K images as training data. As approximately

51K Visual Genome images are also found in the MSCOCO

captions dataset [23], we are careful to avoid contamination

of our MSCOCO validation and test sets. We ensure that

any images found in both datasets are contained in the same

split in both datasets.
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Cross-Entropy Loss CIDEr Optimization

BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr SPICE BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr SPICE

SCST:Att2in [33] - 31.3 26.0 54.3 101.3 - - 33.3 26.3 55.3 111.4 -

SCST:Att2all [33] - 30.0 25.9 53.4 99.4 - - 34.2 26.7 55.7 114.0 -

Ours: ResNet 74.5 33.4 26.1 54.4 105.4 19.2 76.6 34.0 26.5 54.9 111.1 20.2

Ours: Up-Down 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4

Relative Improvement 4% 8% 3% 4% 8% 6% 4% 7% 5% 4% 8% 6%

Table 1. Single-model image captioning performance on the MSCOCO Karpathy test split. Our baseline ResNet model obtains similar

results to SCST [33], the existing state-of-the-art on this test set. Illustrating the contribution of bottom-up attention, our Up-Down model

achieves significant (3–8%) relative gains across all metrics regardless of whether cross-entropy loss or CIDEr optimization is used.

Cross-Entropy Loss CIDEr Optimization

SPICE Objects Attributes Relations Color Count Size SPICE Objects Attributes Relations Color Count Size

Ours: ResNet 19.2 35.4 8.6 5.3 12.2 4.1 3.9 20.2 37.0 9.2 6.1 10.6 12.0 4.3

Ours: Up-Down 20.3 37.1 9.2 5.8 12.7 6.5 4.5 21.4 39.1 10.0 6.5 11.4 18.4 3.2

Table 2. Breakdown of SPICE F-scores over various subcategories on the MSCOCO Karpathy test split. Our Up-Down model outperforms

the ResNet baseline at identifying objects, as well as detecting object attributes and the relations between objects.

As the object and attribute annotations consist of freely

annotated strings, rather than classes, we perform extensive

cleaning and filtering of the training data. Starting from

2,000 object classes and 500 attribute classes, we manually

remove abstract classes that exhibit poor detection perfor-

mance in initial experiments. Our final training set contains

1,600 object classes and 400 attribute classes. Note that we

do not merge or remove overlapping classes (e.g. ‘person’,

‘man’, ‘guy’), classes with both singular and plural versions

(e.g. ‘tree’, ‘trees’) and classes that are difficult to precisely

localize (e.g. ‘sky’, ‘grass’, ‘buildings’).

When training the VQA model, we augment the VQA

v2.0 training data with Visual Genome question and answer

pairs provided the correct answer is present in model’s an-

swer vocabulary. This represents about 30% of the available

data, or 485K questions.

4.1.2 Microsoft COCO Dataset

To evaluate our proposed captioning model, we use the

MSCOCO 2014 captions dataset [23]. For validation of

model hyperparameters and offline testing, we use the

‘Karpathy’ splits [19] that have been used extensively for

reporting results in prior work. This split contains 113,287

training images with five captions each, and 5K images re-

spectively for validation and testing. Our MSCOCO test

server submission is trained on the entire MSCOCO 2014

training and validation set (123K images).

We follow standard practice and perform only minimal

text pre-processing, converting all sentences to lower case,

tokenizing on white space, and filtering words that do not

occur at least five times, resulting in a model vocabulary

of 10,010 words. To evaluate caption quality, we use the

standard automatic evaluation metrics, namely SPICE [1],

CIDEr [42], METEOR [8], ROUGE-L [22] and BLEU [29].

4.1.3 VQA v2.0 Dataset

To evaluate our proposed VQA model, we use the recently

introduced VQA v2.0 dataset [12], which attempts to mini-

mize the effectiveness of learning dataset priors by balanc-

ing the answers to each question. The dataset, which was

used as the basis of the 2017 VQA Challenge2, contains

1.1M questions with 11.1M answers relating to MSCOCO

images.

We perform standard question text preprocessing and to-

kenization. Questions are trimmed to a maximum of 14

words for computational efficiency. The set of candidate an-

swers is restricted to correct answers in the training set that

appear more than 8 times, resulting in an output vocabulary

size of 3,129. Our VQA test server submissions are trained

on the training and validation sets plus additional questions

and answers from Visual Genome. To evaluate answer qual-

ity, we report accuracies using the standard VQA metric [2],

which takes into account the occasional disagreement be-

tween annotators for the ground truth answers.

4.2. ResNet Baseline

To quantify the impact of bottom-up attention, in both

our captioning and VQA experiments we evaluate our full

2http://www.visualqa.org/challenge.html
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Review Net [47] 72.0 90.0 55.0 81.2 41.4 70.5 31.3 59.7 25.6 34.7 53.3 68.6 96.5 96.9 18.5 64.9

Adaptive [27] 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9 19.7 67.3

PG-BCMR [24] 75.4 - 59.1 - 44.5 - 33.2 - 25.7 - 55 - 101.3 - - -

SCST:Att2all [33] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7 20.7 68.9

LSTM-A3 [48] 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27 35.4 56.4 70.5 116 118 - -

Ours: Up-Down 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5 21.5 71.5

Table 3. Highest ranking published image captioning results on the online MSCOCO test server. Our submission, an ensemble of 4

models optimized for CIDEr with different initializations, outperforms previously published work on all reported metrics. At the time of

submission (18 July 2017), we also outperformed all unpublished test server submissions.

Two men playing frisbee in a dark field.

Figure 5. Example of a generated caption showing attended image regions. For each generated word, we visualize the attention weights

on individual pixels, outlining the region with the maximum attention weight in red. Avoiding the conventional trade-off between coarse

and fine levels of detail, our model focuses on both closely-cropped details, such as the frisbee and the green player’s mouthguard when

generating the word ‘playing’, as well as large regions, such as the night sky when generating the word ‘dark’.

model (Up-Down) against prior work as well as an ab-

lated baseline. In each case, the baseline (ResNet), uses

a ResNet [13] CNN pretrained on ImageNet [34] to encode

each image in place of the bottom-up attention mechanism.

In image captioning experiments, similarly to previous

work [33] we encode the full-sized input image with the

final convolutional layer of Resnet-101, and use bilinear

interpolation to resize the output to a fixed size spatial

representation of 10×10. This is equivalent to the maxi-

mum number of spatial regions used in our full model. In

VQA experiments, we encode the resized input image with

ResNet-200 [14]. In separate experiments we use evaluate

the effect of varying the size of the spatial output from its

original size of 14×14, to 7×7 (using bilinear interpolation)

and 1×1 (i.e., mean pooling without attention).

4.3. Image Captioning Results

In Table 1 we report the performance of our full model

and the ResNet baseline in comparison to the existing state-

of-the-art Self-critical Sequence Training [33] (SCST) ap-

proach on the test portion of the Karpathy splits. For fair

comparison, results are reported for models trained with

standard cross-entropy loss, and for models optimized for

CIDEr. Note that the SCST approach uses ResNet-101 en-

coding of full images, similar to our ResNet baseline. All

results are reported for a single model with no fine-tuning of

the input ResNet / R-CNN model. However, the SCST re-

sults are from the best of four random initializations, while

our results are from a single initialization.

Relative to the SCST models, our ResNet baseline ob-

tains slightly better performance under cross-entropy loss,

and slightly worse performance when optimized for CIDEr

score. After incorporating bottom-up attention, our full

Up-Down model shows significant improvements across all

metrics regardless of whether cross-entropy loss or CIDEr

optimization is used. Using just a single model, we obtain

the best reported results for the Karpathy test split. As illus-

trated in Table 2, the contribution from bottom-up attention

is broadly based, illustrated by improved performance in

terms of identifying objects, object attributes and also the
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Yes/No Number Other Overall

Ours: ResNet (1×1) 76.0 36.5 46.8 56.3

Ours: ResNet (14×14) 76.6 36.2 49.5 57.9

Ours: ResNet (7×7) 77.6 37.7 51.5 59.4

Ours: Up-Down 80.3 42.8 55.8 63.2

Relative Improvement 3% 14% 8% 6%

Table 4. Single-model performance on the VQA v2.0 validation

set. The use of bottom-up attention in the Up-Down model pro-

vides a significant improvement over the best ResNet baseline

across all question types, even though the ResNet baselines use

almost twice as many convolutional layers.

Yes/No Number Other Overall

d-LSTM+n-I [26, 12] 73.46 35.18 41.83 54.22

MCB [11, 12] 78.82 38.28 53.36 62.27

UPMC-LIP6 82.07 41.06 57.12 65.71

Athena 82.50 44.19 59.97 67.59

HDU-USYD-UNCC 84.50 45.39 59.01 68.09

Ours: Up-Down 86.60 48.64 61.15 70.34

Table 5. VQA v2.0 test-standard server accuracy as at 8 August

2017, ranking our submission against published and unpublished

work for each question type. Our approach, an ensemble of 30

models, outperforms all other leaderboard entries.

relationships between objects.

Table 3 reports the performance of 4 ensembled models

trained with CIDEr optimization on the official MSCOCO

evaluation server, along with the highest ranking previously

published results. At the time of submission (18 July 2017),

we outperform all other test server submissions on all re-

ported evaluation metrics.

4.4. VQA Results

In Table 4 we report the single model performance of

our full Up-Down VQA model relative to several ResNet

baselines on the VQA v2.0 validation set. The addition

of bottom-up attention provides a significant improvement

over the best ResNet baseline across all question types,

even though the ResNet baseline uses approximately twice

as many convolutional layers. Table 5 reports the perfor-

mance of 30 ensembled models on the official VQA 2.0

test-standard evaluation server, along with the previously

published baseline results and the highest ranking other en-

tries. At the time of submission (8 August 2017), we out-

perform all other test server submissions. Our submission

also achieved first place in the 2017 VQA Challenge.

4.5. Qualitative Analysis

To help qualitatively evaluate our attention methodology,

in Figure 5 we visualize the attended image regions for dif-

ferent words generated by our Up-Down captioning model.

As indicated by this example, our approach is equally ca-

Question: What room are they in? Answer: kitchen

Figure 6. VQA example illustrating attention output. Given the

question ‘What room are they in?’, the model focuses on the stove-

top, generating the answer ‘kitchen’.

pable of focusing on fine details or large image regions.

This capability arises because the attention candidates in

our model consist of many overlapping regions with varying

scales and aspect ratios – each aligned to an object, several

related objects, or an otherwise salient image patch.

Unlike conventional approaches, when a candidate atten-

tion region corresponds to an object, or several related ob-

jects, all the visual concepts associated with those objects

appear to be spatially co-located – and are processed to-

gether. In other words, our approach is able to consider all

of the information pertaining to an object at once. This is

also a natural way for attention to be implemented. In the

human visual system, the problem of integrating the sepa-

rate features of objects in the correct combinations is known

as the feature binding problem, and experiments suggest

that attention plays a central role in the solution [40, 39].

We include an example of VQA attention in Figure 6.

5. Conclusion

We present a novel combined bottom-up and top-down

visual attention mechanism. Our approach enables atten-

tion to be calculated more naturally at the level of objects

and other salient regions. Applying this approach to im-

age captioning and visual question answering, we achieve

state-of-the-art results in both tasks, while improving the

interpretability of the resulting attention weights.

At a high level, our work more closely unifies tasks

involving visual and linguistic understanding with recent

progress in object detection. While this suggests several

directions for future research, the immediate benefits of our

approach may be captured by simply replacing pretrained

CNN features with pretrained bottom-up attention features.
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