

Multimodal Machine Learning

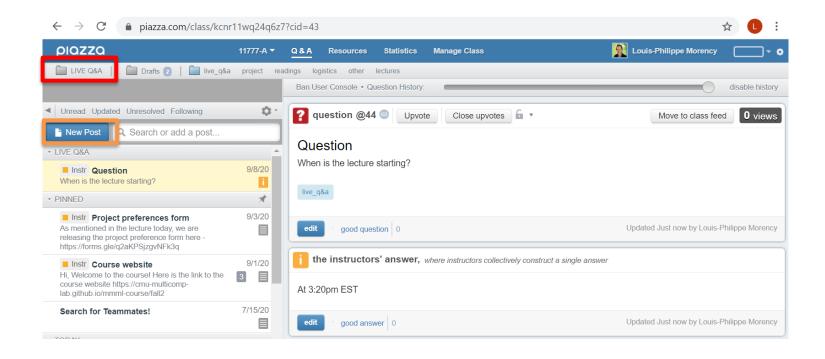
Lecture 5.1: Multimodal alignment

Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Administrative Stuff

Piazza Live Q&A – Reminder



Upcoming Schedule

First project assignment:

- Proposal presentations (Friday 10/9)
- First project reports (Sunday 10/11)

Midterm project assignment

- Midterm presentations (Friday 11/12)
- Midterm reports (Sunday 11/14)

Final project assignment

- Final presentations (Friday 12/11)
- Final reports (Sunday 12/13)

Unimodal Representation Analyses

Main goals:

- Get familiar with unimodal representations
 - Learn about tools based on CNNs, word2vec, ...
- Understand the structure in your unimodal data
 - Perform some visualization of the unimodal data
- Explore qualitatively the unimodal data
 - How does it relate to your labels? Look at specific examples

Examples of unimodal analyses:

- What are the different verbs used in the VQA questions?
- What objects do not get detected? Are they important?
- Visualize face embeddings with respect of emotion labels

Multimodal Machine Learning

Lecture 5.1: Multimodal alignment

Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

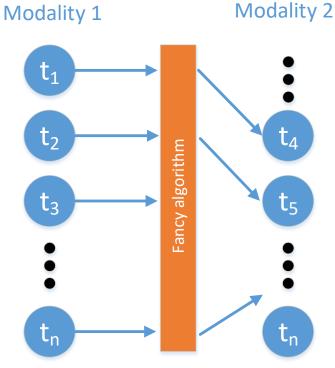
Lecture objectives

- Multimodal alignment
 - Implicit
 - Explicit
- Explicit signal alignment
 - Dynamic Time Warping
 - Canonical Time Warping
- Attention models in deep learning (implicit and explicit alignment)
 - Soft attention
 - Hard attention
 - Spatial Transformer Networks

Multimodal alignment

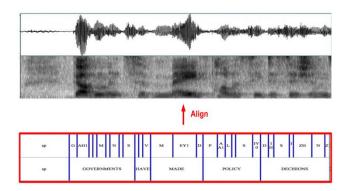
Multimodal-alignment

- Multimodal alignment finding relationships and correspondences between two or more modalities
- Two types
 - Explicit alignment is the task in itself
 - Implicit / Latent alignment helps when solving a different task (for example "Attention" models)
- Examples?
 - Images with captions
 - Recipe steps with a how-to video
 - Phrases/words of translated sentences



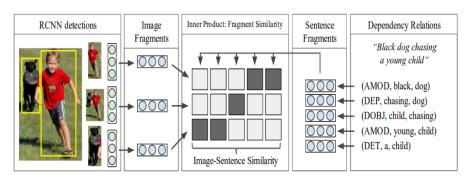
Explicit multimodal-alignment

- Explicit alignment goal is to find correspondences between modalities
 - Aligning speech signal to a transcript
 - Aligning two out-of sync sequences
 - Co-referring expressions



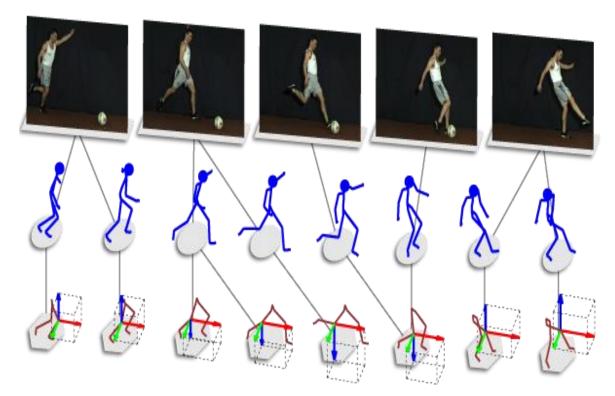
Implicit multimodal-alignment

- Implicit alignment uses internal latent alignment of modalities in order to better solve various problems
 - Machine Translation
 - Cross-modal retrieval
 - Image & Video Captioning
 - Visual Question Answering



Explicit alignment

Temporal sequence alignment



Applications:

- Re-aligning asynchronous data
- Finding similar data across modalities (we can estimate the aligned cost)
- Event reconstruction from multiple sources

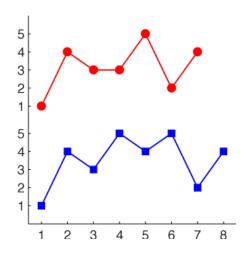
Let's start unimodal – Dynamic Time Warping

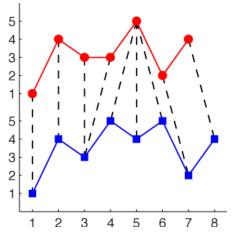
We have two unaligned temporal unimodal signals

• Find set of indices to minimize the alignment difference:

$$L(\boldsymbol{p}_{t}^{x},\boldsymbol{p}_{t}^{y}) = \sum_{t=1}^{l} \left\| \boldsymbol{x}_{\boldsymbol{p}_{t}^{x}} - \boldsymbol{y}_{\boldsymbol{p}_{t}^{y}} \right\|_{2}^{2}$$

- Where p^x and p^y are index vectors of same length
- Dynamic Time Warping is designed to find these index vectors

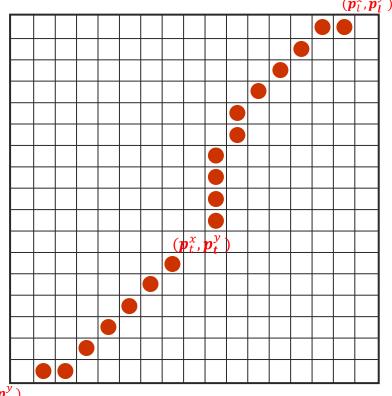




Dynamic Time Warping continued

Lowest cost path in a cost matrix

- Restrictions?
 - Monotonicity no going back in time
 - Continuity no gaps
 - Boundary conditions start and end at the same points
 - Warping window don't get too far from diagonal
 - Slope constraint do not insert or skip too much

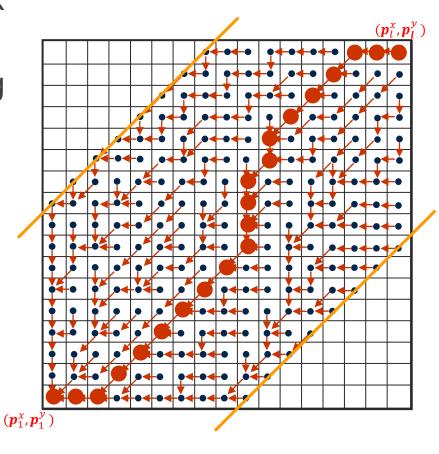


 $(\boldsymbol{p}_1^x, \boldsymbol{p}_1^y)$

Dynamic Time Warping continued

Lowest cost path in a cost matrix

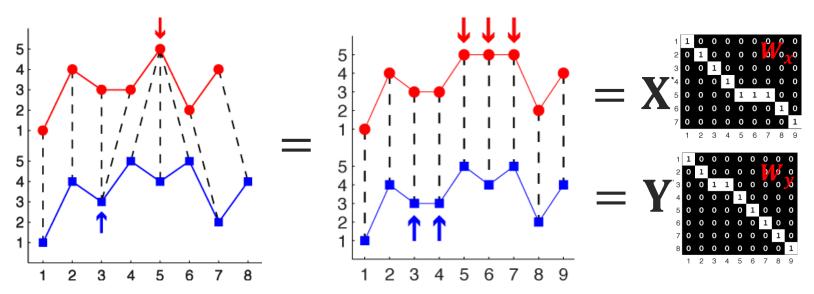
 Solved using dynamic programming while respecting the restrictions



DTW alternative formulation

$$L(\mathbf{p}^{x}, \mathbf{p}^{y}) = \sum_{t=1}^{l} \|x_{\mathbf{p}_{t}^{x}} - y_{\mathbf{p}_{t}^{y}}\|_{2}^{2}$$

Replication doesn't change the objective!



Alternative objective:

$$L(\boldsymbol{W}_{x}, \boldsymbol{W}_{y}) = \|\boldsymbol{X}\boldsymbol{W}_{x} - \boldsymbol{Y}\boldsymbol{W}_{y}\|_{F}^{2}$$

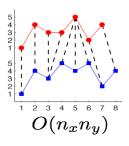
Frobenius norm $\|\mathbf{A}\|_F^2 = \sum_i \sum_j |a_{i,j}|^2$

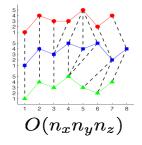
X, Y — original signals (same #rows, possibly different #columns)

 \boldsymbol{W}_{x} , \boldsymbol{W}_{y} - alignment matrices

DTW – Some Limitations

Computationally complex





m sequences

$$O(\prod_{i=1}^m n_i)$$

Sensitive to outliers

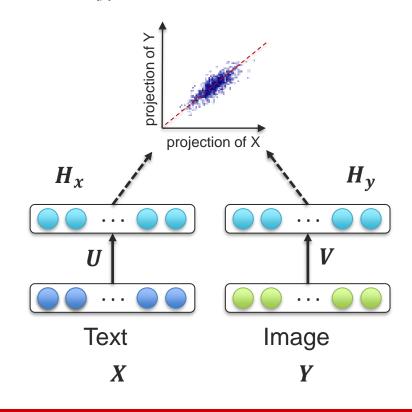
Unimodal!

Canonical Correlation Analysis reminder

maximize: $tr(U^T \Sigma_{XY} V)$

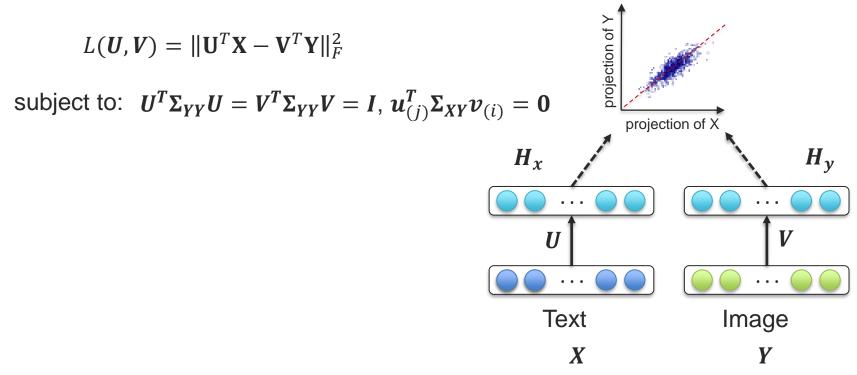
subject to: $U^T \Sigma_{YY} U = V^T \Sigma_{YY} V = I$, $u_{(j)}^T \Sigma_{XY} v_{(i)} = 0$ for $i \neq j$

- Linear projections maximizing correlation
- 2 Orthogonal projections
- Unit variance of the projection vectors



Canonical Correlation Analysis reminder

- When data is normalized it is actually equivalent to smallest RMSE reconstruction
- CCA loss can also be re-written as:



Canonical Time Warping

Dynamic Time Warping + Canonical Correlation Analysis
 = Canonical Time Warping

$$L(\mathbf{U}, \mathbf{V}, \mathbf{W}_{x}, \mathbf{W}_{y}) = \left\| \mathbf{U}^{T} \mathbf{X} \mathbf{W}_{x} - \mathbf{V}^{T} \mathbf{Y} \mathbf{W}_{y} \right\|_{F}^{2}$$

- Allows to align multi-modal or multi-view (same modality but from a different point of view)
- W_x , W_y temporal alignment
- U, V cross-modal (spatial) alignment

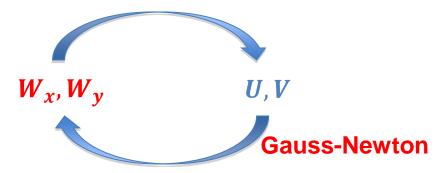
[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009]

Canonical Time Warping

$$L(\mathbf{U}, \mathbf{V}, \mathbf{W}_{x}, \mathbf{W}_{y}) = \left\| \mathbf{U}^{T} \mathbf{X} \mathbf{W}_{x} - \mathbf{V}^{T} \mathbf{Y} \mathbf{W}_{y} \right\|_{F}^{2}$$

Optimized by Coordinate-descent – fix one set of parameters, optimize another

Generalized Eigen-decomposition



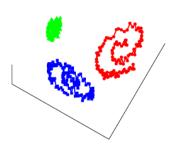
[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009, NIPS]

Generalized Time warping

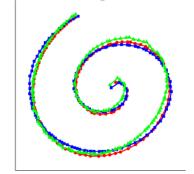
 Generalize to multiple sequences all of different modality

$$L(\boldsymbol{U_i}, \boldsymbol{W_i}) = \sum_{i=1}^{T} \sum_{j=1}^{T} \left\| \boldsymbol{\mathbf{U}_i^T \mathbf{X_i W_i}} - \boldsymbol{\mathbf{U}_j^T \mathbf{X_j W_j}} \right\|_F^2$$

- W_i set of temporal alignments
- U_i set of cross-modal (spatial) alignments



- (1) Time warping
- (2) Spatial embedding



[Generalized Canonical Time Warping, Zhou and De la Tore, 2016, TPAMI]

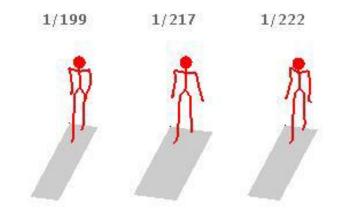
Alignment examples (unimodal)

CMU Motion Capture

Subject 1: 199 frames

Subject 2: 217 frames

Subject 3: 222 frames

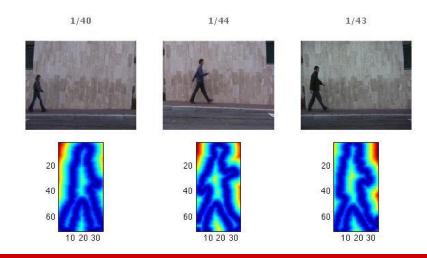


Weizmann

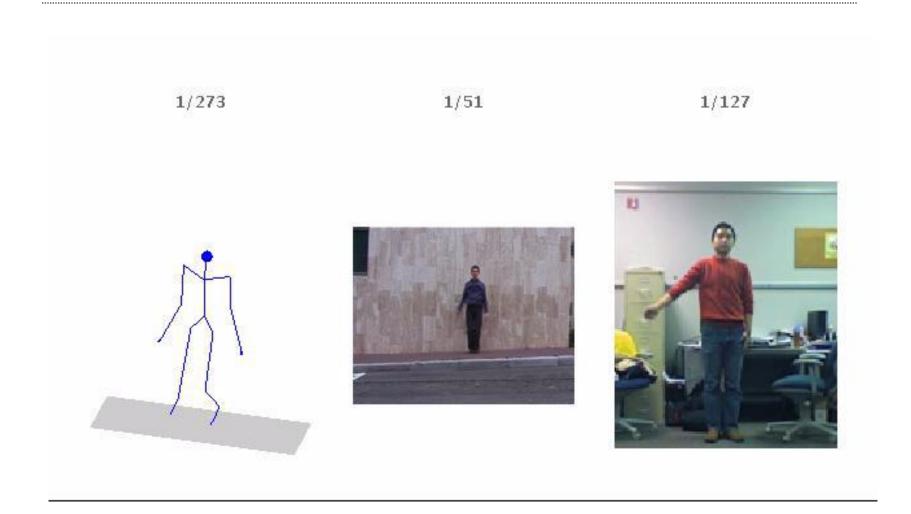
Subject 1: 40 frames

Subject 2: 44 frames

Subject 3: 43 frames



Alignment examples (multimodal)



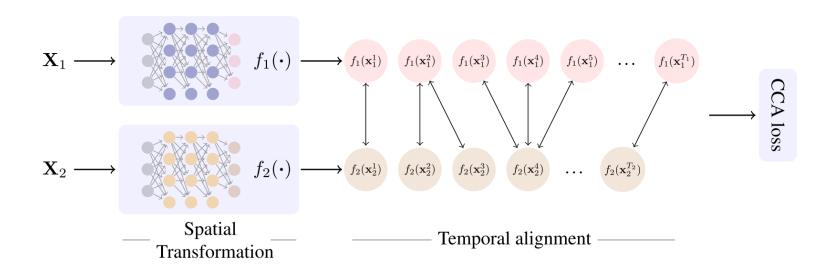
Canonical time warping - limitations

- Linear transform between modalities
- How to address this?

Deep Canonical Time Warping

$$L(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{W}_{\boldsymbol{x}}, \boldsymbol{W}_{\boldsymbol{y}}) = \|f_{\boldsymbol{\theta}_1}(\mathbf{X})\mathbf{W}_{\mathbf{x}} - f_{\boldsymbol{\theta}_1}(\mathbf{Y})\mathbf{W}_{\mathbf{y}}\|_F^2$$

Could be seen as generalization of DCCA and GTW



[Deep Canonical Time Warping, Trigeorgis et al., 2016, CVPR]

Deep Canonical Time Warping

$$L(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{W}_{\boldsymbol{x}}, \boldsymbol{W}_{\boldsymbol{y}}) = \|f_{\boldsymbol{\theta}_1}(\mathbf{X})\mathbf{W}_{\mathbf{x}} - f_{\boldsymbol{\theta}_1}(\mathbf{Y})\mathbf{W}_{\boldsymbol{y}}\|_F^2$$

- The projections are orthogonal (like in DCCA)
- Optimization is again iterative:
 - Solve for alignment (W_x, W_y) with fixed projections (θ_1, θ_2)
 - Eigen decomposition
 - Solve for projections (θ_1, θ_2) with fixed alignment (W_x, W_y)
 - Gradient descent
 - Repeat till convergence

[Deep Canonical Time Warping, Trigeorgis et al., 2016, CVPR]

Implicit alignment

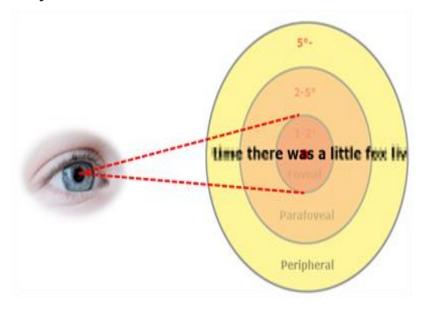
Implicit alignment

- We looked how to explicitly align temporal data
- Could use that as an internal (hidden) step in our models?
- Can we instead encourage the model to align data when solving a different problem?
- Yes!
 - Graphical models
 - Neural attention models (focus of today's lecture)

Attention models

Attention in humans

- Foveal vision we only see in "high resolution" in 2 degrees of vision
- We focus our attention selectively to certain words (for example our names)
- We attend to relevant speech in a noisy room



Attention models in deep learning

- Many examples of attention models in recent years!
- Why:
 - Allows for implicit data alignment
 - Good results empirically
 - In some cases faster (don't need to focus on all the image)
 - Better Interpretability

Types of Attention Models

- Recent attention models can be roughly split into three major categories
 - 1. Soft attention
 - Acts like a gate function. Deterministic inference.
 - 2. Transform network
 - Warp the input to better align with canonical view
 - 3. Hard attention
 - Includes stochastic processes. Related to reinforcement learning.

Soft attention

Machine Translation

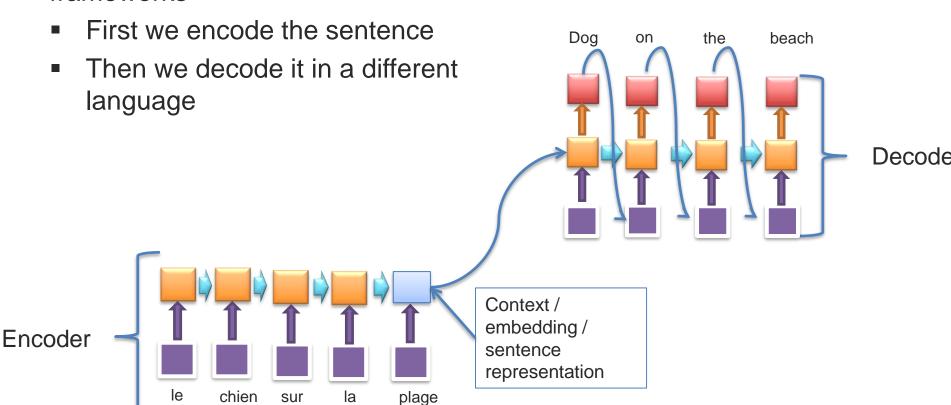
Given a sentence in one language translate it to another

Dog on the beach -> le chien sur la plage

 Not exactly multimodal task – but a good start! Each language can be seen almost as a modality.

Machine Translation with RNNs

A quick reminder about encoder decoder frameworks



Machine Translation with RNNs

What is the problem with this?
What happens when the sentences are very long?

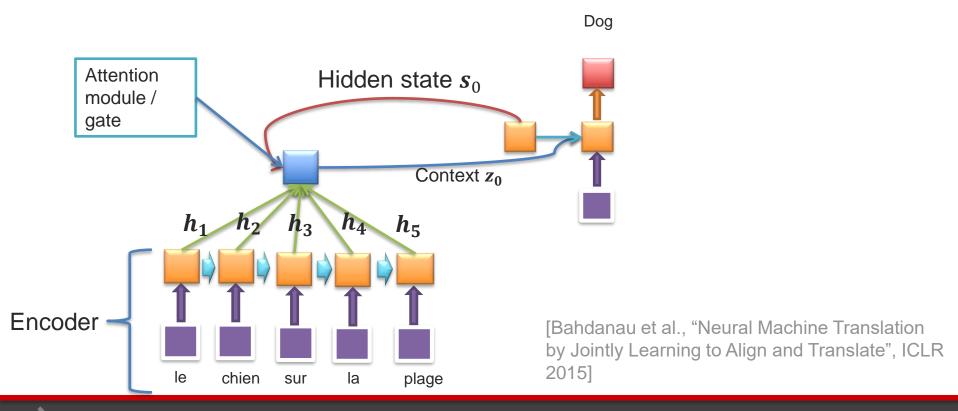
 We expect the encoders hidden state to capture everything in a sentence, a very complex state in a single vector, such as

The agreement on the European Economic Area was signed in August 1992.

L'accord sur la zone économique européenne a été signé en août 1992.

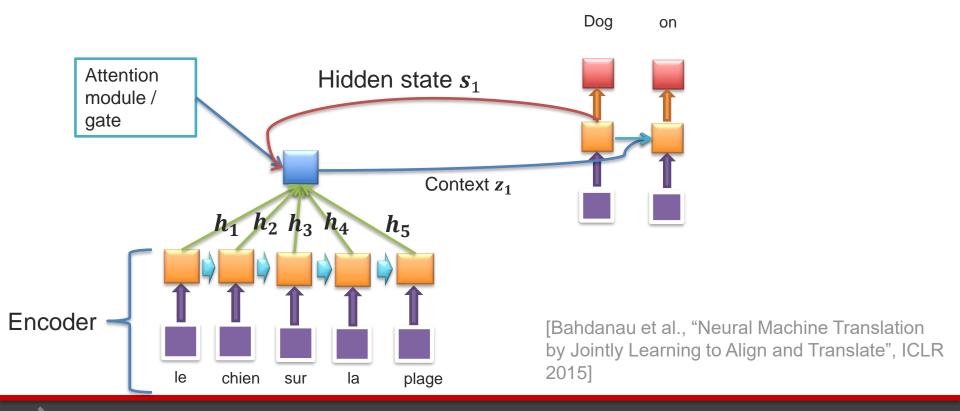
Decoder – attention model

 Before encoder would just take the final hidden state, now we actually care about the intermediate hidden states



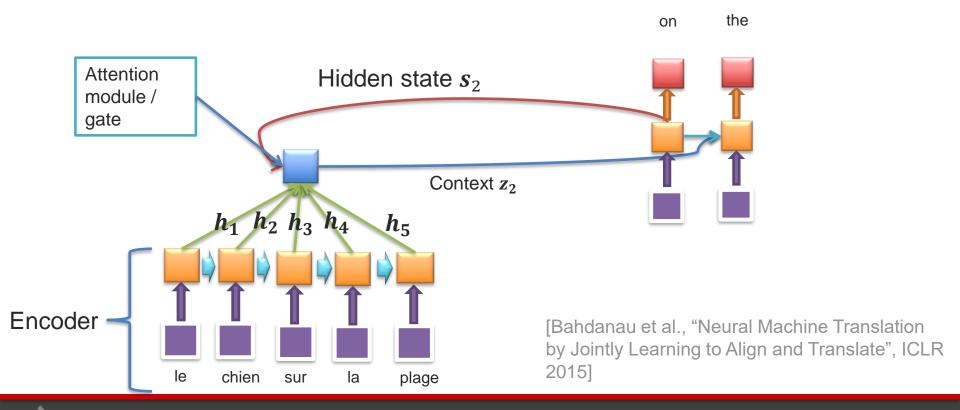
Decoder – attention model

 Before encoder would just take the final hidden state, now we actually care about the intermediate hidden states



Decoder – attention model

 Before encoder would just take the final hidden state, now we actually care about the intermediate hidden states



How do we encode attention?

Before:

 $p(y_i|y_1,...,y_{i-1},x)=g(y_{i-1},s_i,z)$, where $z=h_T$, and s_i - the current state of the decoder

Now:

$$p(y_i|y_1,...,y_{i-1},x) = g(y_{i-1},s_i,z_i)$$

- Have an attention "gate"
 - A different context z_i used at each time step!

$$\mathbf{z}_i = \sum_{j=i}^{T_{\mathcal{X}}} \alpha_{ij} \mathbf{h}_j$$

 α_{ij} is the (scalar) attention for word j at generation step i

MT with attention

So how do we determine α_{ij} ,

• $\alpha_{i,j} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$ - softmax, making sure they sum to 1

where:

•
$$e_{ij} = v^T \sigma(Ws_{i-1} + Uh_j)$$

a feedforward network that can tell us given the current state of decoder how important the current encoding is now $v, W, U-$ learnable weights

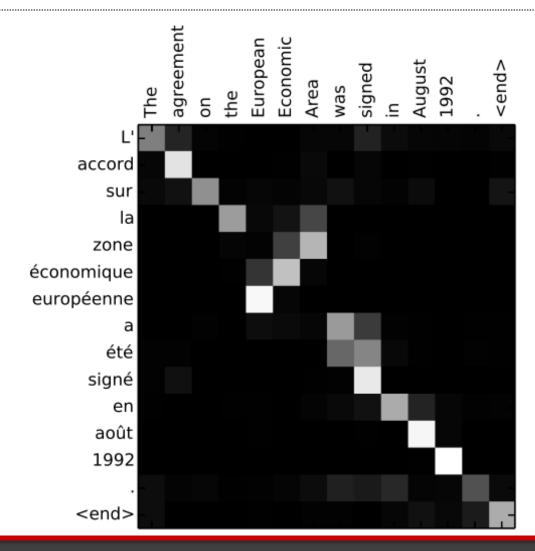
$$z_i = \sum_{j=i}^{T_x} \alpha_{ij} h_j$$
 expectation of the context (a fancy way to say it's a weighted average)

MT with attention

Basically we are using a neural network to tell us where a neural network should be looking!

- We can use with RNN, LSTM or GRU
- Encoder being used is the same structure as before
 - Can use uni-directional
 - Can use bi-directional
- Model can be trained using our regular back-propagation through time, all of the modules are differentiable

Does it work?



MT with attention recap

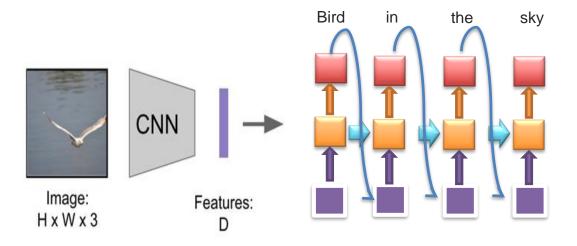
- It gives good translation results (especially for long sentences)
- Also get a (soft) alignment of sentences in different languages
 - Extra interpretability of method functioning

How do we move to multimodal?

Visual captioning with soft attention

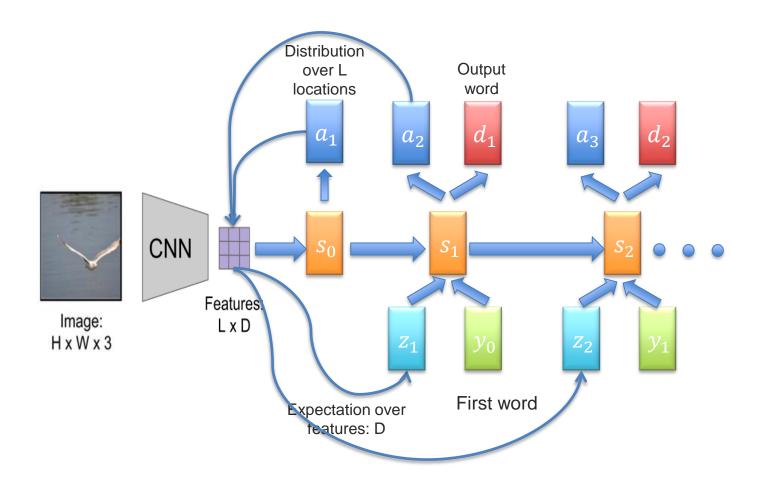
[Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, Xu et al., 2015]

Recap RNN for Captioning



Why not using final layer of the CNN?

Looking at more fine grained features



Soft attention

- Allows for latent data alignment
- Allows us to get an idea of what the network "sees"
- Can be optimized using back propagation

- Good at paper naming!
 - Show, Attend and Tell (extension of Show and Tell)
 - Listen, Attend and Walk
 - Listen, Attend and Spell
 - Ask, Attend and Answer

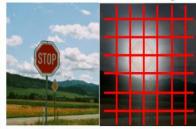
Some limitations of grid-based attention

Can we fixate on small parts of image but still have easy end-to-end training?



A woman is throwing a frisbee in a park.

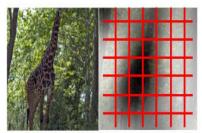
A dog is standing on a hardwood floor.



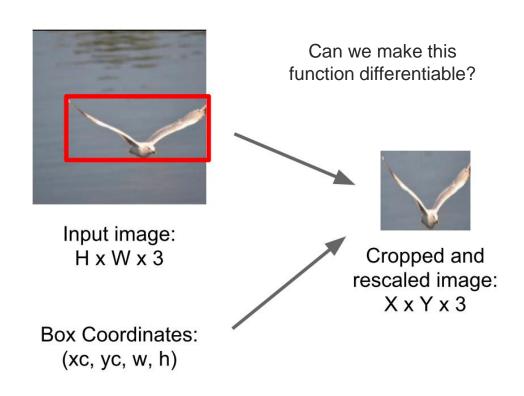
A <u>stop</u> sign is on a road with a mountain in the background.

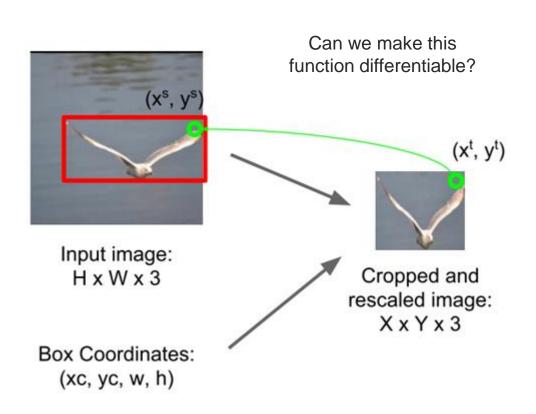
A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.



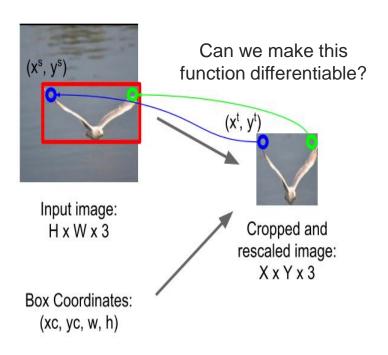
A giraffe standing in a forest with trees in the background.





Idea: Function mapping pixel coordinates (x^t, y^t) of output to pixel coordinates (x^s, y^s) of input

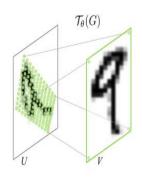
$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = \begin{bmatrix} \theta_{1,1} & \theta_{1,2} & \theta_{1,3} \\ \theta_{2,1} & \theta_{2,2} & \theta_{2,3} \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$



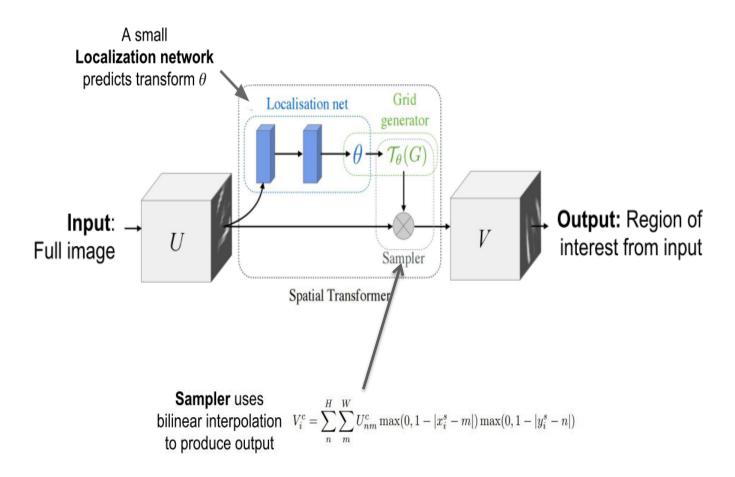
Idea: Function mapping pixel coordinates (x^t, y^t) of output to pixel coordinates (x^s, y^s) of input

$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = \begin{bmatrix} \theta_{1,1} & \theta_{1,2} & \theta_{1,3} \\ \theta_{2,1} & \theta_{2,2} & \theta_{2,3} \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$

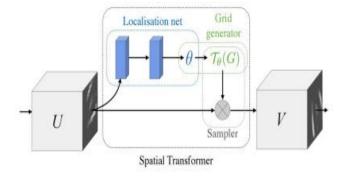
Network "attends" to input by predicting θ



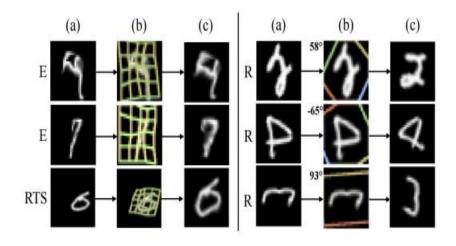
Repeat for all pixels in *output* to get a **sampling grid**



Differentiable "attention / transformation" module

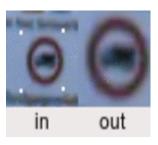


Insert spatial transformers into a classification network and it learns to attend and transform the input



Examples on real world data

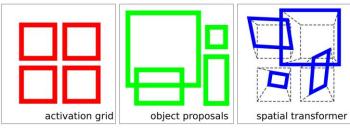
Results on traffic sign recognition



Code available http://torch.ch/blog/2015/09/07/spatial_transformers.html

Recap on Spatial Transformer Networks

- Differentiable so we can just use back-prop for training end-to-end
- Can be used with complex transformations to focus on an image
 - Affine and Piece-Wise Affine, Perspective, This Plate Splines
- We can use it instead of grid based soft and hard attention for multimodal tasks



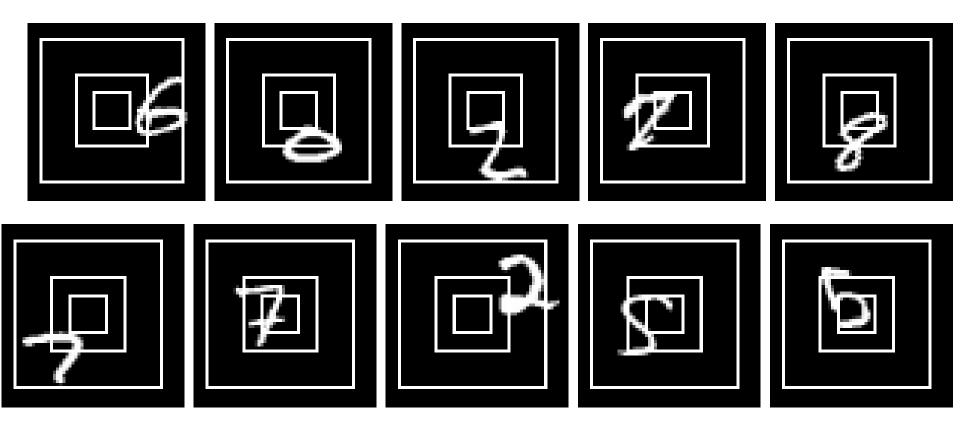
Glimpse Network (Hard Attention)

Hard attention

- Soft attention requires computing a representation for the whole image or sentence
- Hard attention on the other hand forces looking only at one part
- Main motivation was reduced computational cost rather than improved accuracy (although that happens a bit as well)
- Saccade followed by a glimpse how human visual system works

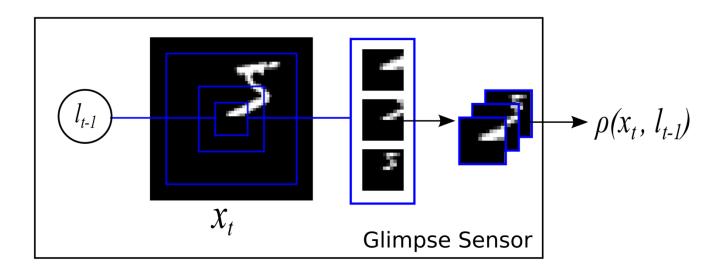
[Recurrent Models of Visual Attention, Mnih, 2014] [Multiple Object Recognition with Visual Attention, Ba, 2015]

Hard attention examples



Glimpse Sensor

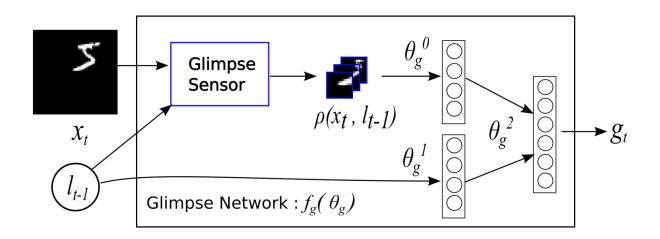
Looking at a part of an image at different scales



- At a number of different scales combined to a single multichannel image (human retina like representation)
- Given a location l_t output an image summary at that location [Recurrent Models of Visual Attention, Mnih, 2014]

Glimpse network

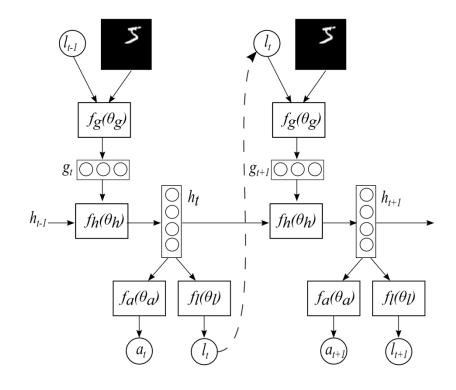
Combining the Glimpse and the location of the glimpse into a joint network



- The glimpse is followed by a feedforward network (CNN or a DNN)
- The exact formulation of how the location and appearance are combined varies, the important thing is combining what and where
- Differentiable with respect to glimpse parameters but not the location

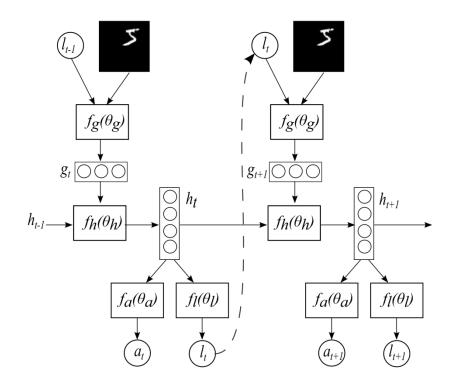
Overall Architecture - Emission network

- Given an image a glimpse location l_t , and optionally an action a_t
- Action can be:
 - Some action in a dynamic system – press a button etc.
 - Classification of an object
 - Word output
- This is an RNN with two output gates and a slightly more complex input gate!



Recurrent model of Visual Attention (RAM)

- Sample locations of glimpses leading to updates in the network
- Use gradient descent to update the weights (the glimpse network weights are differentiable)
- The emission network is an RNN
- Not as simple as backprop but doable
- Turns out this is very similar and in some cases equivalent to reinforcement learning using the REINFORCE learning rule [Williams, 1992]



Multi-modal alignment recap

Multimodal-alignment recap

- Explicit alignment aligns two or more modalities (or views) as an actual task. The goal is to find correspondences between modalities
 - Dynamic Time Warping
 - Canonical Time Warping
 - Deep Canonical Time Warping
- Implicit alignment uses internal latent alignment of modalities in order to better solve various problems
 - Attention models
 - Soft attention
 - Spatial transformer networks
 - Hard attention

