

Language Technologies Institute

Multimodal Machine Learning

Lecture 5.2: Alignment and Representations

Louis-Philippe Morency

Administrative Stuff

Language Technologies Institute

Piazza Live Q&A

Please share your questions and comments on Piazza Live Q&A

Live responses by your TAs and follow-up by the instructor after the main lecture

Tuesday, Thursday 3:20pm: Live office hours with LP

- Use the same Zoom link (waiting room will be activated)
- Friday 8pm: deadline for presentations
 - Submit on Gradescope (slides) and Box (video)
- Sunday 8pm: deadline for reports
 - Submit on Gradescope
- Friday (10/9) 8pm: Deadline for student feedback

No reading assignment for week 6

But don't forget to complete week 5 assignment by Monday

Reading assignment for Week 7 (starting Monday 10/5)

Period: Monday Oct 12th until Friday Oct 16th 8pm (week 7)

Feedback process:

- Piazza: Full list of project videos and link to feedback form
- Each student randomly matched with 6 projects
 - Feedback needs to be substantial (see form instructions)
- Feedback is anonymous, but instructors will see names
- Each team should receive feedback from ~24 students
- [optional] Share feedback for other (not matched) projects
- Your primary TA will share the feedback with your team.
 - Meeting with your primary TA during week 8 (10/19-10/23)

Share Your Thoughts! <u>https://forms.gle/ar7BZgVKB6XoyPGq5</u>

Course Feedback - 11777 Fall 2020

Please take a moment to share with us your feedback regarding the course Multimodal Machine Learning (11777 Fall 2020). We love to hear about how your feel related to the course structure and content, so that we can adjust the course if necessary. Thank you for your time!

* Required

How do you li	ke the course s	o far? *			
	Poor	Fair	Satisfactory	Very good	Excellent
Answer	0	0	0	0	0
Course conte	nt *				
	Strongly disagree	Disagree	Neutral	Agree	Strongly agree
Learning objectives were clear	0	0	0	0	0

Deadline

Please submit your feedback about this course before this Sunday 10/4

Optional, but greatly appreciated! ©

Anonymous, by default.

 You can optionally share your email address if you want us to follow-up with you directly.

Language Technologies Institute

Multimodal Machine Learning

Lecture 5.2: Alignment and Representations

Louis-Philippe Morency

Objectives of today's class

- Contextualized sentence embedding
- Transformer networks
 - Self-attention
 - Multi-head attention
 - Position embeddings
 - Sequence-to-sequence modeling
- Multimodal contextualized embeddings
- Language pre-training
 - BERT pre-training and fine-tuning
- Multimodal pre-training

Contextualized Sequence Encoding

Language Technologies Institute

Sequence Encoding - Contextualization

How to encode this sequence while modeling the interaction between elements (e.g., words)? **Option 1: Bi-directional LSTM:**

(e.g., ELMO)

But harder to parallelize...

Language Technologies Institute

Sequence Encoding - Contextualization

Option 2: Convolutions

Can be parallelized!

But modeling long-range dependencies require multiple layers

And convolutional kernels are static

Sequence Encoding - Contextualization

Option 3: Self-attention

Self-Attention

Language Technologies Institute

Self-Attention

Language Technologies Institute

Self-Attention

Language Technologies Institute

Language Technologies Institute

Language Technologies Institute

Language Technologies Institute

18

Language Technologies Institute

19

What if we want to attend simultaneously to multiple subspaces of x?

What happens if the words are shuffled?

Position embeddings

□ Position information is not encoded in a self-attention module

How can we encode position information?

Simple approach: one-hot encoding

Position embeddings

Position information is not encoded in a self-attention module

How can we encode position information?

Simple approach: one-hot encoding + linear embeddings + Sum - or concat

Sequence-to-Sequence Using Transformer

Language Technologies Institute

Sequence-to-Sequence Modeling

Language Technologies Institute

How should we connect the encoder and decoder self-attention to the transformer attention?

Language Technologies Institute

Contextualized Multimodal Embedding

Language Technologies Institute

Multimodal Embeddings

Contextualized Multimodal Embeddings

Language Technologies Institute

Multimodal Transformer

Tsai et al., Multimodal Transformer for Unaligned Multimodal Language Sequences, ACL 2019

Cross-Modal Transformer

Tsai et al., Multimodal Transformer for Unaligned Multimodal Language Sequences, ACL 2019

Language Pre-training

Language Technologies Institute

Token-level and Sentence-level Embeddings

Token-level embeddings

Which tasks?

Sentence-level embedding

Which tasks?

Pre-Training and Fine-Tuning

Pre-training

(e.g., language model)

Fine-Tuning

BERT: Bidirectional Encoder Representations from Transformers

Advantages:

- Jointly learn representation for token-level and sentence level
- Same network architecture for pre-training and fine-tuning

BERT: Bidirectional Encoder Representations from Transformers

Advantages:

Language Technologies Institute

BERT: Bidirectional Encoder Representations from Transformers

Advantages:

Language Technologies Institute

Pre-training BERT Model

Masked Language Model

Randomly mask input tokens and then try to predict them

What is the loss function?

Pre-training BERT Model

Next Sentence Prediction

Given two sentences, predict if this is the next one or not

What is the loss function?

IsNext - or -

NotNext

Transformer Self-Attention

Three Embeddings: Token + Position + Sentence

Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

h'_3 h_5 h'_4 h'_5 h_s h_3 h_{sep} h'_2 h_2 h_4 h'_1 h_1 **Transformer Self-Attention** x' x'_3 x'_{Δ} x'_{5} x_2 x_3 x'cls x_1 x_4 x_5 sep do like it not enjoy time here my

How?

Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

2

Token-level classification for only one sentence

Examples: part-of-speech tagging, slot filling

How to compare two sentences?

3

Sentence-level classification for two sentences

Examples: natural language inference

Question-answering: find start/end of the answer in the document

Paragraph: "... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?" **Plausible Answer:** *later laws*

Question 2: "What was the name of the 1937 treaty?" Plausible Answer: Bald Eagle Protection Act

4

Question-answering: find start/end of the answer in the document

Multimodal Pre-training

Language Technologies Institute

Multimodal Pre-Training

How to extend to multimodal modalities?

56

VL-BERT

How to extend to multimodal modalities?

Option 1: Simply concatenate tokens from different modalities

https://arxiv.org/pdf/1908.08530.pdf

M-BERT

How to extend to multimodal modalities?

Option 2: "Shift" language representation based on the other modalities

https://arxiv.org/pdf/1908.05787.pdf

