

Language Technologies Institute

Multimodal Machine Learning

Lecture 7.2: Generative Models Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Administrative Stuff

Language Technologies Institute

Upcoming Schedule

First project assignment:

- Proposal presentations (Friday 10/9)
- First project reports (Sunday 10/11)
- Midterm project assignment
 - Midterm presentations (Friday 11/12)
 - Midterm reports (Sunday 11/14)
- Final project assignment
 - Final presentations (Friday 12/11)
 - Final reports (Sunday 12/13)

Midterm Project Report Instructions

- Goal: Evaluate state-of-the-art models on your dataset and identify key issues through a detailed error analysis
 - It will inform the design of your new research ideas
- Report format: 8 pages, 2 column (ICML template)
 - The report should follow a similar structure to a research paper
- Number of SOTA models
 - Teams of 3 should have at least two baseline models
 - Teams of 4 or 5 should have at least three baseline models
- Error analysis
 - This is one of the most important part of this report. You need to understand where previous models can be improved.

Examples of Possible Error Analysis Approaches

- Visualization (e.g., TSNE) of the correct and incorrect predictions
- Manually inspect the samples that are incorrectly predicted
 - What are the commonalities?
 - What are differences with the correct ones?
- Ablation studies to understand what model components are important

Midterm Project Report Instructions

Main report sections:

- Abstract
- Introduction
- Related work
- Problem statement
- Multimodal baseline models
- Experimental methodology
- Results and discussion
- New research ideas

The structure is similar to a research paper submission ©

Please, answer all your questions!

- Do not leave unanswered questions in your study group discussion forum.
- Monitor follow-up questions for your summary
- Ok to answer questions after Monday 8pm deadline
 - But you still need to submit 2 posts before the deadline

We will start monitoring unanswered questions...

Language Technologies Institute

Multimodal Machine Learning

Lecture 7.2: Generative Models Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Outline

- Probabilistic graphical models
 - Joint probabilistic distribution
 - Example: creating a graphical model
- Bayesian networks
 - Conditional probability distribution
 - Dynamic Bayesian Network
- Generative Adversarial Network
 - cGAN, infoGAN, cycleGAN

Probabilistic Graphical Models

Language Technologies Institute

Definition: A probabilistic graphical model (PGM) is a graph formalism for compactly modeling joint probability distributions and dependence structures over a set of random variables.

- Random variables: X₁,...,X_n
- P is a joint distribution over X₁,...,X_n

Why do we want to learn the joint distribution?

Inference for Known Joint Probability Distribution

When we know the joint probability distribution :

$$P(A, B, C, D, E) \implies$$

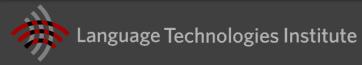
 $\left\{ \begin{array}{l} \mbox{If A, B C, D and E are discrete} \\ \mbox{variables, then P(A,B,C,D, E)} \\ \mbox{will be a 5-D tensor (matrix)} \end{array} \right. \label{eq:alpha}$

Two main forms of inference:

Joint probability for a particular assignment

P(A = 1, B = 'car', C = 2, D = 'banana', E = 10)

A specific entry in the 5-D tensor



Inference for Known Joint Probability Distribution

2

Probability of a subset of variables (query) given known assignments of other variables (evidences)

$$P(A, D | C = 3) \implies \text{the oth}$$

Use the product rule to *marginalize* the other variables B and E

$$P(A,D|C=3) = \sum_{\forall b \in B, e \in E} P(A,D,b,e|C=3)$$

Use the inverse of product rule P(X|Y) = P(X,Y)/P(Y)

$$P(A, D | C = 3) = \frac{1}{P(C)} \sum_{\forall b \in B, e \in E} P(A, D, b, e, C = 3)$$

Inference for Known Joint Probability Distribution

Probability of a subset of variables (query) given known assignments of other variables (evidences)

$$P(x|y) = \alpha \sum_{\forall z \in Z} P(x, y, z)$$

where *x* is the subset of query variables

y is the subset of evidence assignments

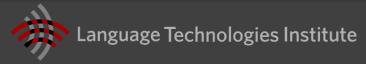
Z is the set of all other variables (not in x or y)

Can we represent P more compactly?

Key: Exploit independence properties

Independent Random Variables

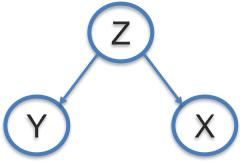
- Two variables X and Y are independent if
 - P(X=x|Y=y) = P(X=x) for all values x,y
 - Equivalently, knowing Y does not change predictions of X
- If X and Y are independent then:
 - P(X, Y) = P(X|Y)P(Y) = P(X)P(Y)
- X Y
- If X_1, \ldots, X_n are independent then:
 - $P(X_1,...,X_n) = P(X_1)...P(X_n)$

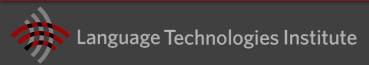


Conditional Independence

X and Y are conditionally independent given Z if

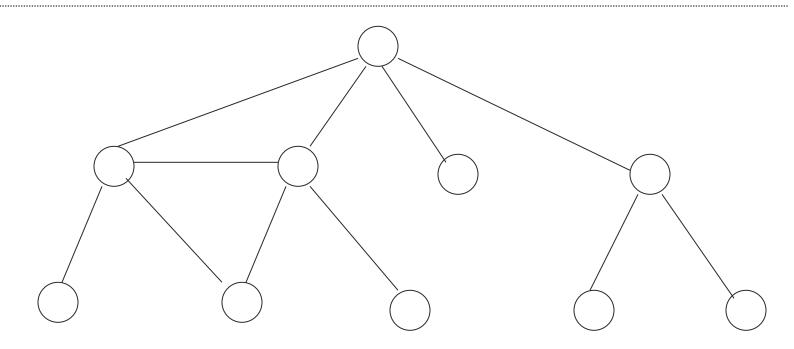
- P(X=x|Y=y, Z=z) = P(X=x|Z=z) for all values x, y, z
- Equivalently, if we know Z, then knowing Y does not change predictions of X





- A tool that visually illustrate <u>conditional</u> <u>independence</u> among variables in a given problem.
- Consisting of nodes (Random variables or States) and edges (Connecting two nodes, directed or undirected).
- The lack of edge represents conditional independence between variables.

Graphical Model

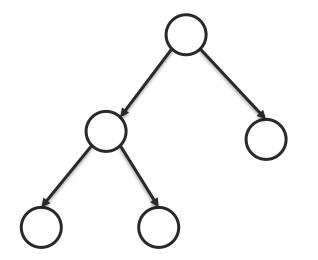


Different types of graphical models:

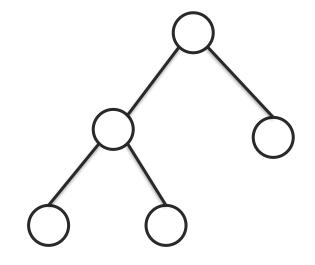
 Chain, Path, Cycle, Directed Acyclic Graph (DAG), Parents and Children

Two Main Types of Graphical Models

Bayesian networks



Markov Models (next week)

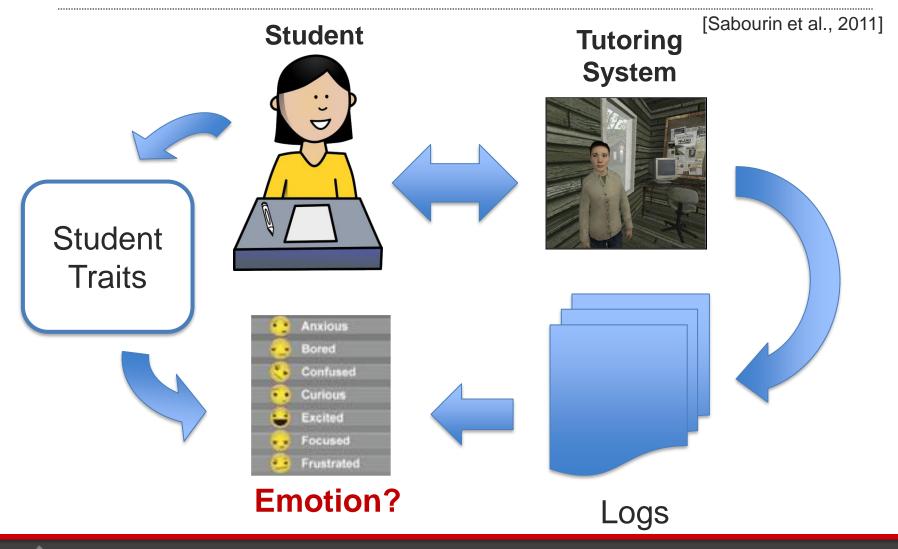


- Directed acyclic graph
- Conditional dependencies
- Undirected graphical model
- Cyclic dependencies

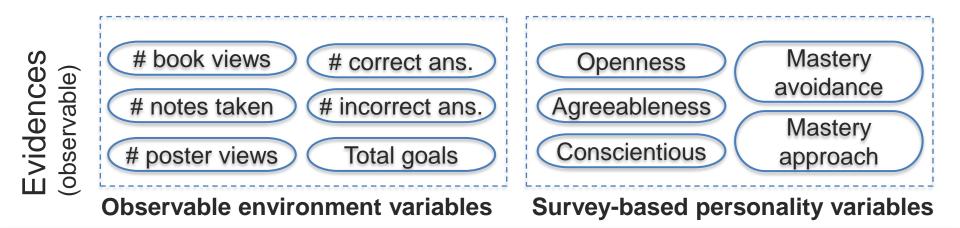
Creating a Graphical Model

Language Technologies Institute

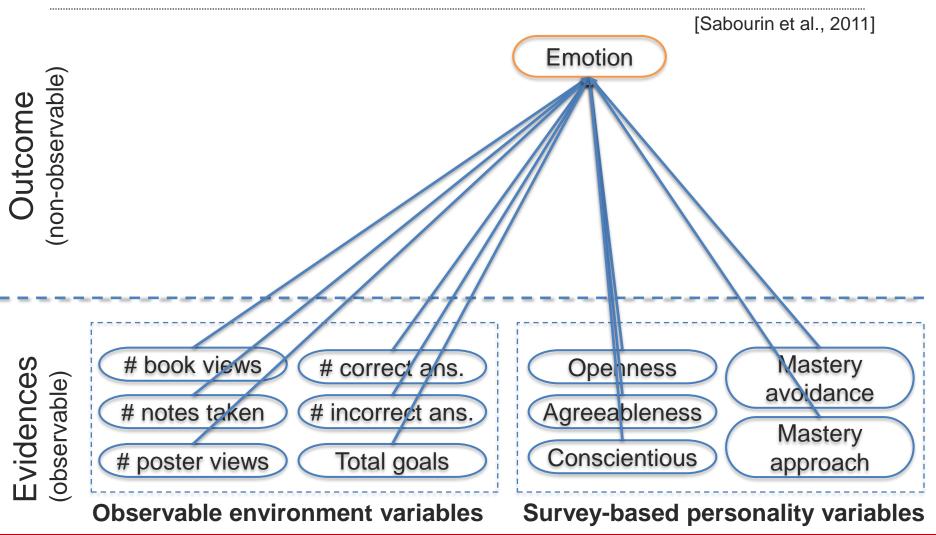
Example: Inferring Emotion from Interaction Logs



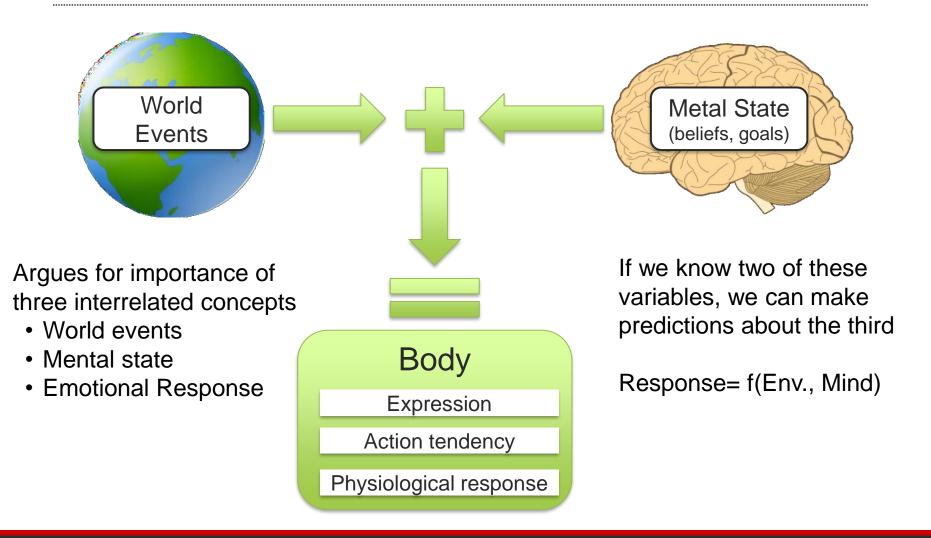
Example: Bayesian Network Representation



Example: Naïve Bayes Approach

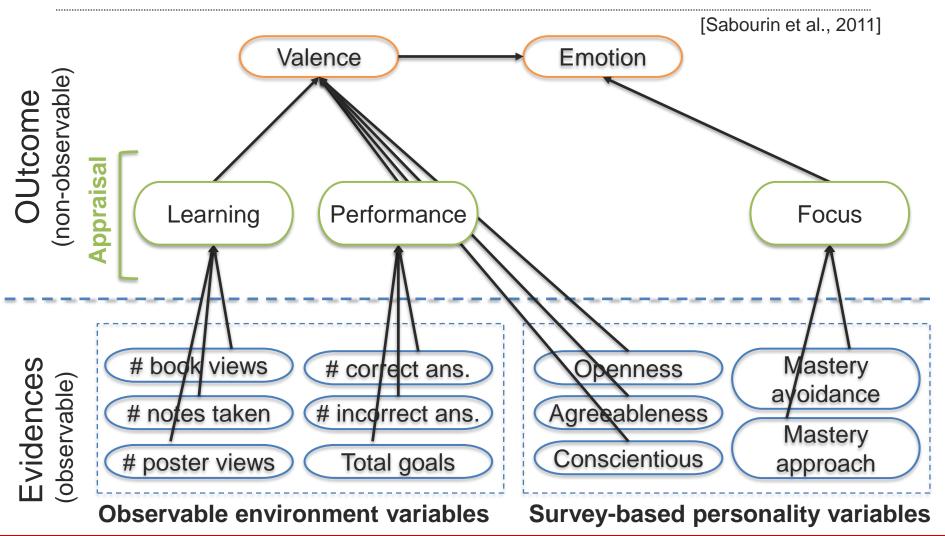


Appraisal Theory of Emotion



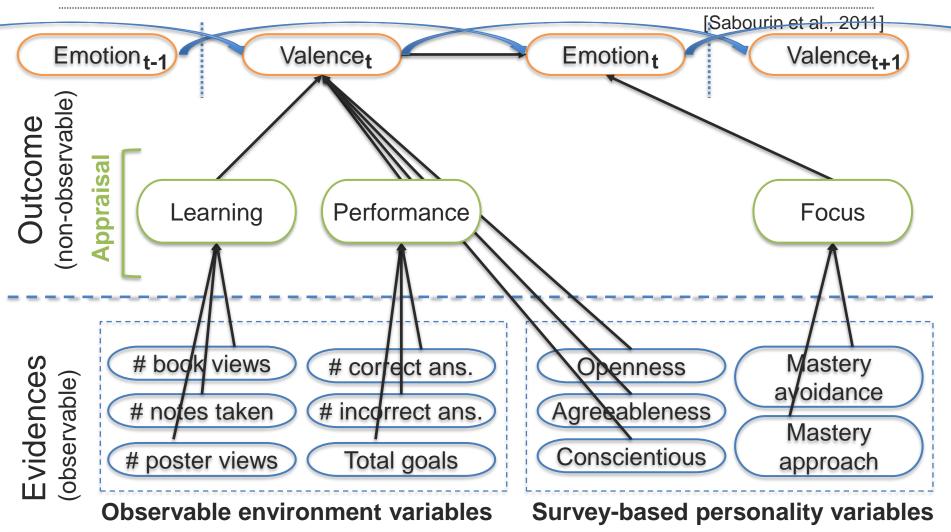
Language Technologies Institute

Example: Bayesian Network Approach



Language Technologies Institute

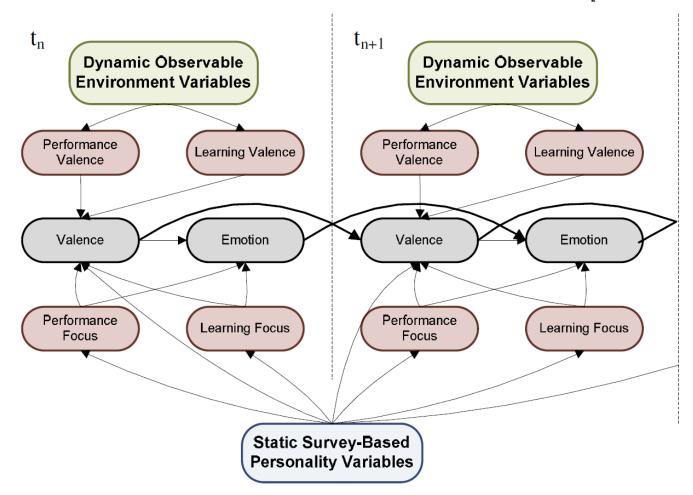
Example: Dynamic Bayesian Network Approach



Language Technologies Institute

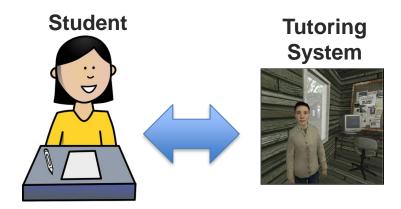
Example: Dynamic Bayesian Network Approach

[Sabourin et al., 2011]

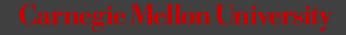


Example: Inferring Emotion from Interaction Logs

[Sabourin et al., 2011]



	Emotion Accuracy	Valence Accuracy
Baseline	22.4%	54.5%
Naïve Bayes	18.1%	51.2%
Bayes Net	25.5%	66.8%
Dynamic BN	32.6%	72.6%



Bayesian Networks

Language Technologies Institute

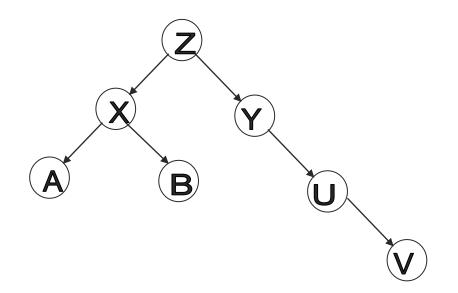
Definition: A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

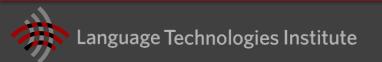
Syntax:

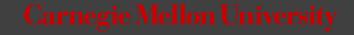
- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents:
 P (X_i | Parents (X_i))

In the simplest case, conditional distribution represented as a conditional probability distribution (CPD) giving the distribution over X_i for each combination of parent values

A specific type of graphical model that is represented as a Directed Acyclic Graph.







Example

"I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?"

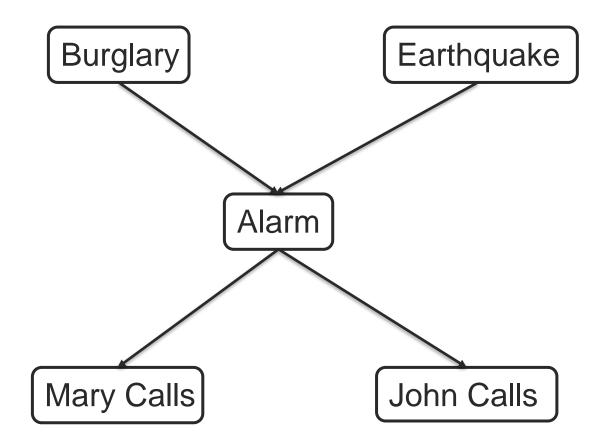
Variables?

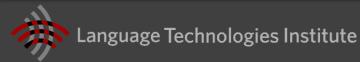
Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

"Causal" knowledge?

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example – Network Topology





Joint Probability in Graphical Models

With chain-rule, the joint probability can be restated:

P(A, B, C, D, E) = P(A|B, C, D, E)P(B, C, D, E)

= P(A|B,C,D,E)P(B|C,D,E)P(C|D,E)

= P(A|B,C,D,E)P(B|C,D,E)P(C,D,E)

= P(A|B, C, D, E)P(B|C, D, E)P(C|D, E)P(D, E)

= P(A|B, C, D, E)P(B|C, D, E)P(C|D, E)P(D|E)P(E)

The order in applying the chain-rule is arbitrary.

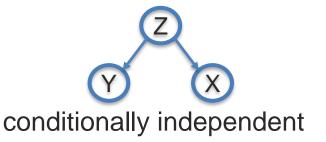
How can we simplify the joint probability even more, given the graphical model?

Joint Probability in Graphical Models

With chain-rule, the joint probability can be reshaped:

P(A, B, C, D, E) = P(A|B, C, D, E)P(B|C, D, E)P(C|D, E)P(D|E)P(E)

Remember these concepts:



In a Bayesian network, each conditional probability for a specific variable X only depends on its parents:

P(X | all variables) = P(X | parents(X))

Conditional Probability Distribution (CPD)

Conditional Probability Distribution (CPD)

Given a variable X and its parents (Y and Z):

$$P(X|parents(X)) = P(X|Y,Z)$$

□ For **categorical variable**: expressed as a conditional probability table

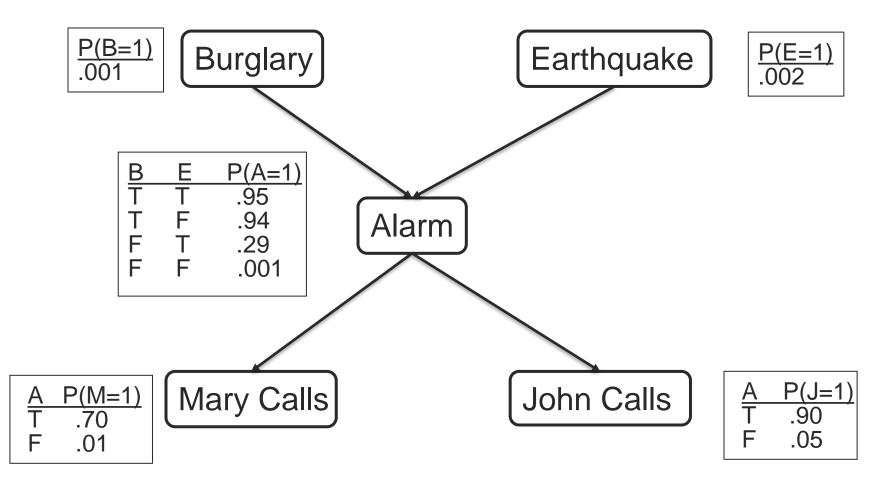
	Y=0	Y=1
P(X=0 Y)	4/6	1/3
P(X=1 Y)	2/6	2/3

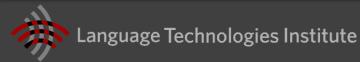
□ For **continuous variable**: expressed as a conditional density function

 For example, multivariate normal density function or Gaussian linear regression (used by Bayes RegressionLinear Model)

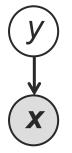
Z

Example – Conditional Probability Distributions





Generative Model: Naïve Bayes Classifier



Label: {0:Dominant, 1:Not-dominant}
 (outcome)

Observation vector: [gaze, turn-taking,speech-energy] (evidence)

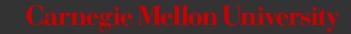
Score function: $P(y = a | x_i)$

Likelihood Prior Chain rule
Bayes' theorem:
$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} \approx P(x|y)P(y) = P(x,y)$$

Posterior Marginal likelihood $P(x) = \sum_{y} P(x|y)P(y)$
(partition)

Dynamic Bayesian Network

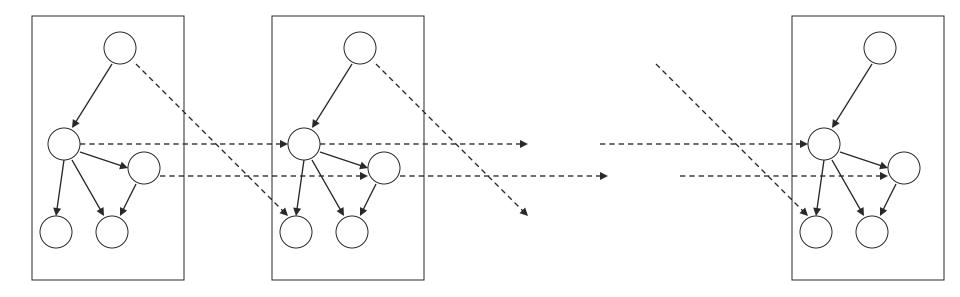
Language Technologies Institute

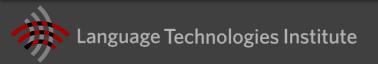


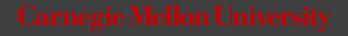
Dynamic Bayesian Network (DBN)

- Bayesian network allows to represent sequential dependencies.
- Dynamically changing or evolving over time.
- Directed graphical model of stochastic processes.
- Especially aiming at time series modeling.
- Satisfying the Markovian condition: The state of a system at time t depends only on its immediate past state at time t-1.

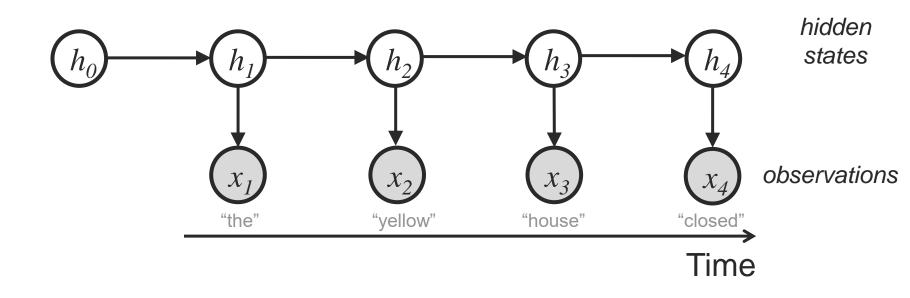
Dynamic Bayesian Network (DBN)





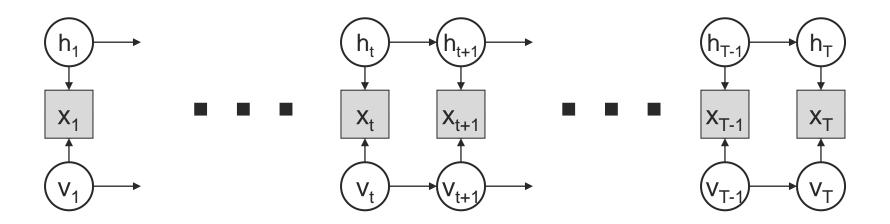


Hidden Markov Models



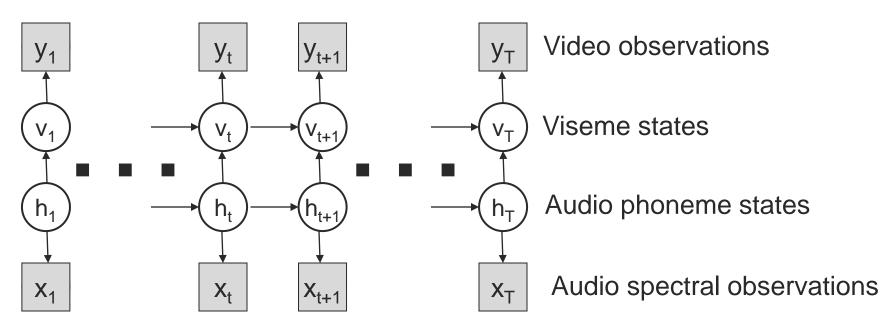
How to model multimodal data, multiple data streams?

Factorial HMM



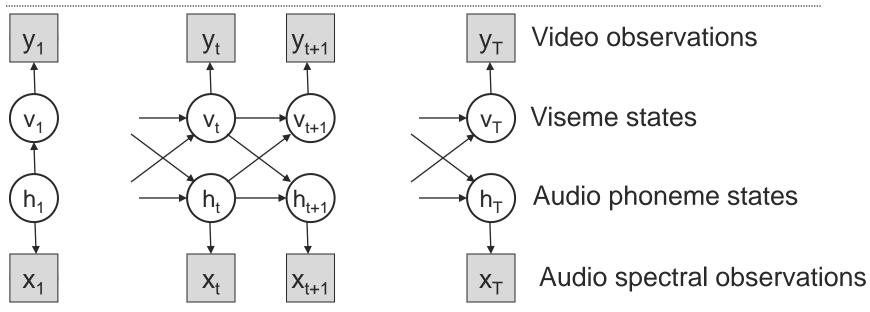
- Factorial HMM:
 - h_t and v_t represent two different types of background information, each with its own history
 - Observations x_t depend on both hidden processes
- Model parameters:
 - $p(v_{t+1}|v_t), p(h_{t+1}|h_t), p(x_t|h_t,v_t)$

The Boltzmann Zipper

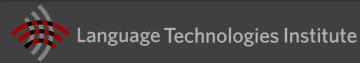


- Both streams have a "memory" (h_t and v_t)
- Model parameters:
 - $p(h_{t+1}|h_t), p(x_t|h_t)$
 - $p(v_{t+1}|v_t,h_{t+1}), p(y_t|h_t)$

The Coupled HMM



- Advantage over Boltzmann Zipper: More flexible, because neither vision nor sound is "privileged" over the other.
 - $p(h_{t+1}|v_t,h_t), p(x_t|h_t)$
 - $p(v_{t+1}|v_t,h_t), p(y_t|h_t)$



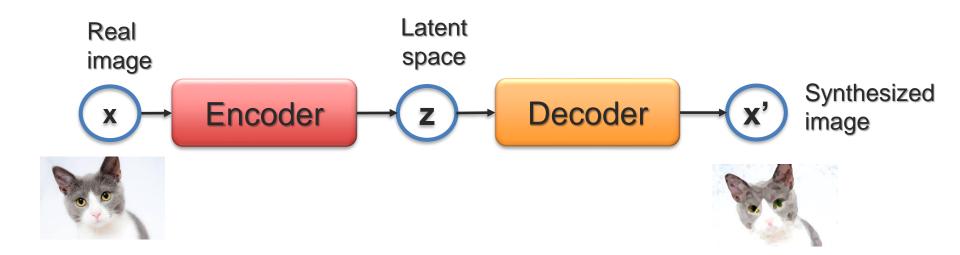
Learning (Dynamic) Bayesian Networks

- Multiple techniques exist to learn the model parameters based on data
 - Maximum likelihood estimator
 - Bayesian estimator, which allows to include prior information
- Python libraries:
 - http://pgmpy.org/
 - http://www.bayespy.org
 - https://pomegranate.readthedocs.io/en/latest/

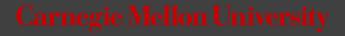
Generating Data Using Neural Networks

Language Technologies Institute

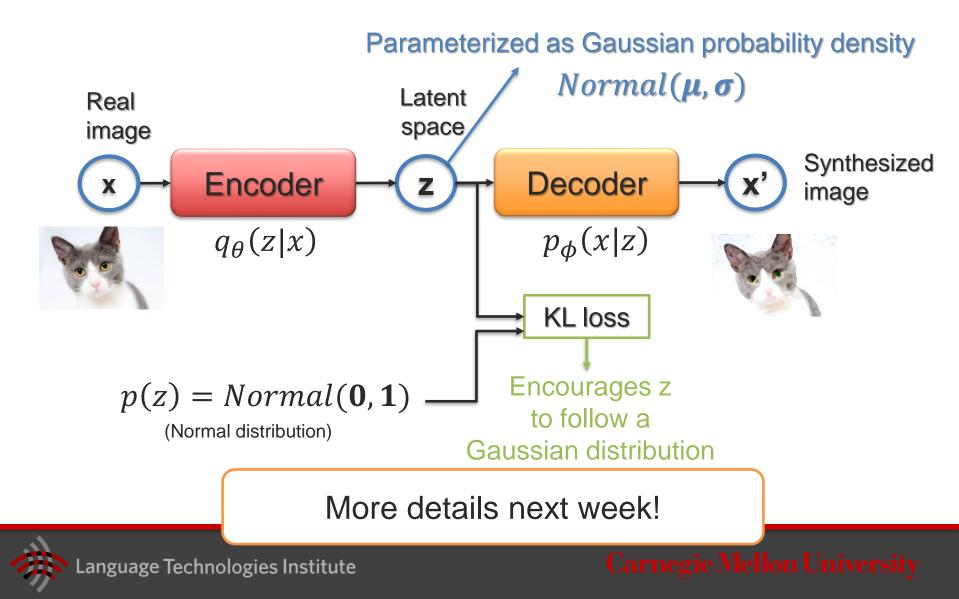
Auto-encoder



After learning this autoencoder, can I input any z vector in the decoder?



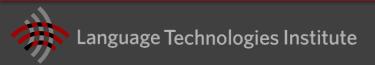
Variational Autoencoder

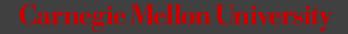


Variational Auto-encoder

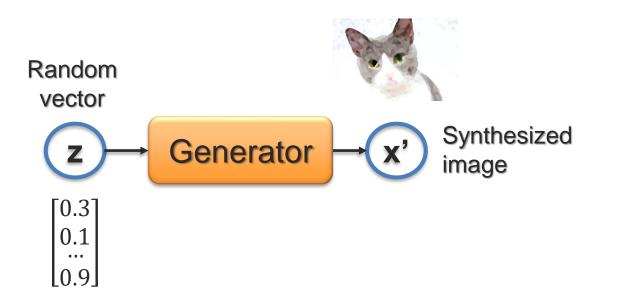
The normal distribution has nice properties:

But these images are not as realistic looking...

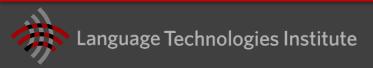




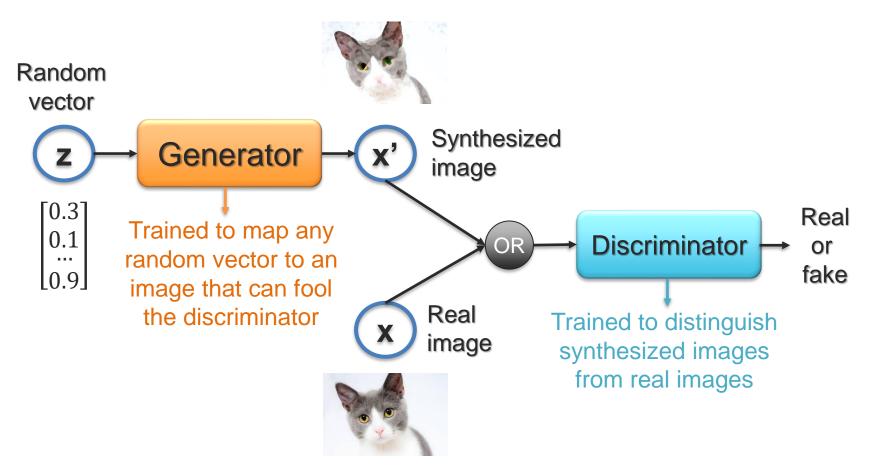
Generative Network



How to train the generator to synthesize realistic images?

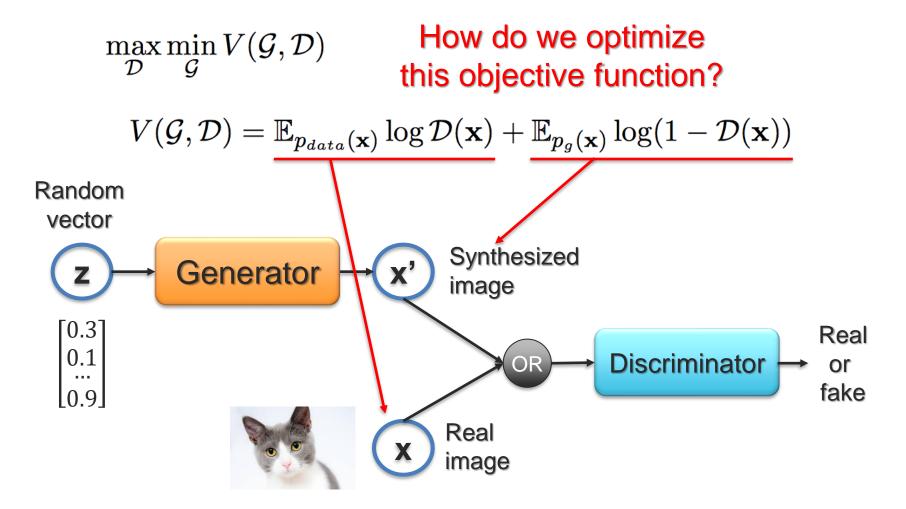


Generative Adversarial Network (GAN)

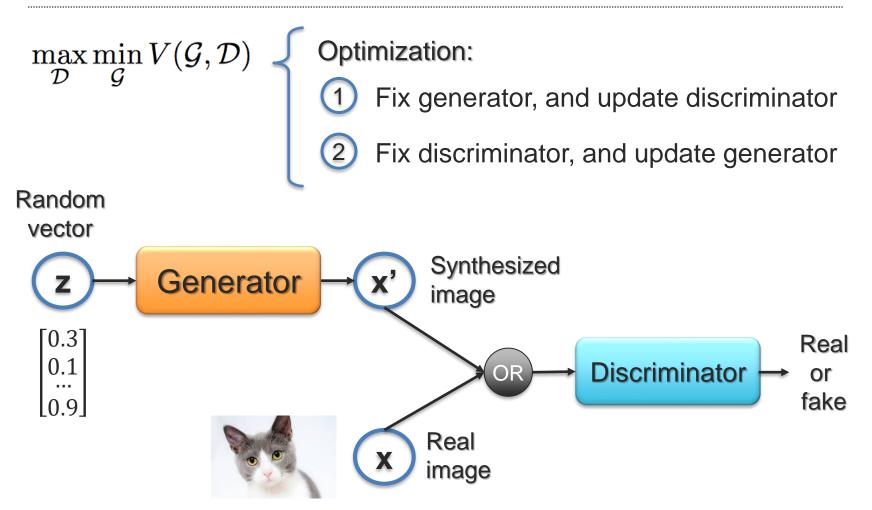


How to train both the generator and the discriminator?

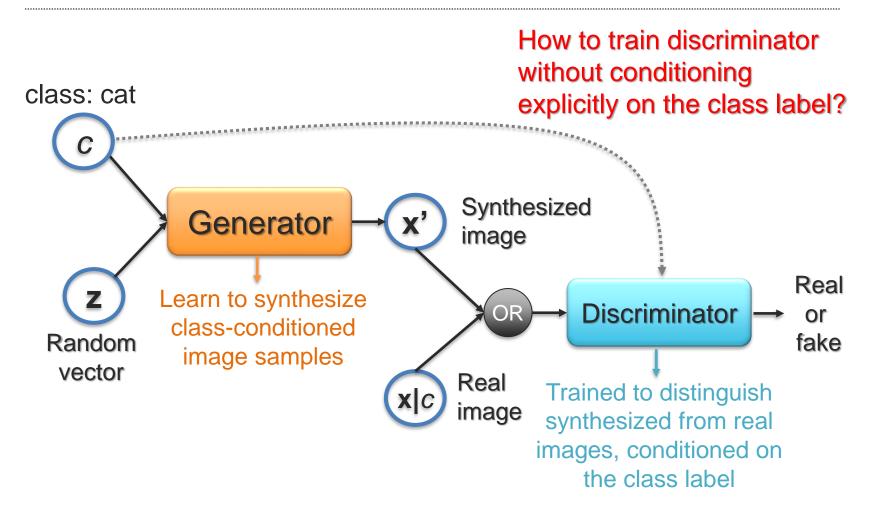
GAN Training

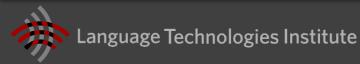


GAN Training

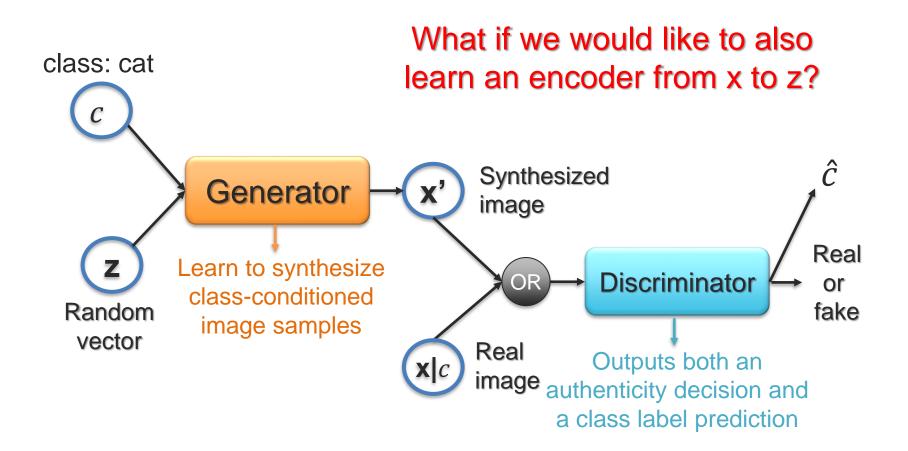


Conditional GAN

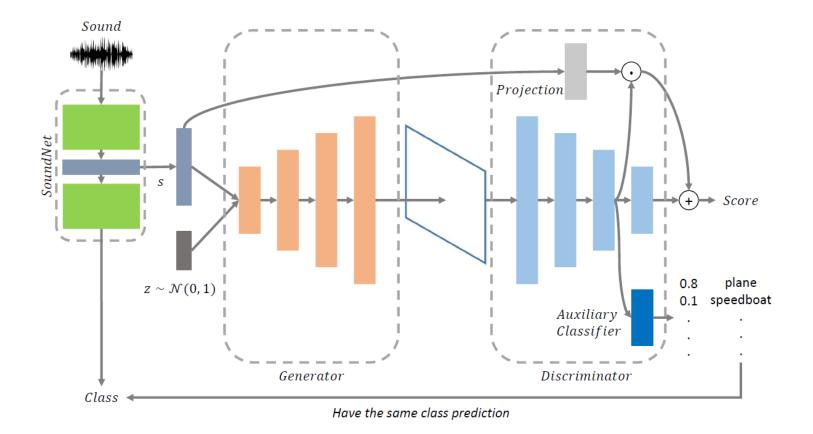




Info GAN

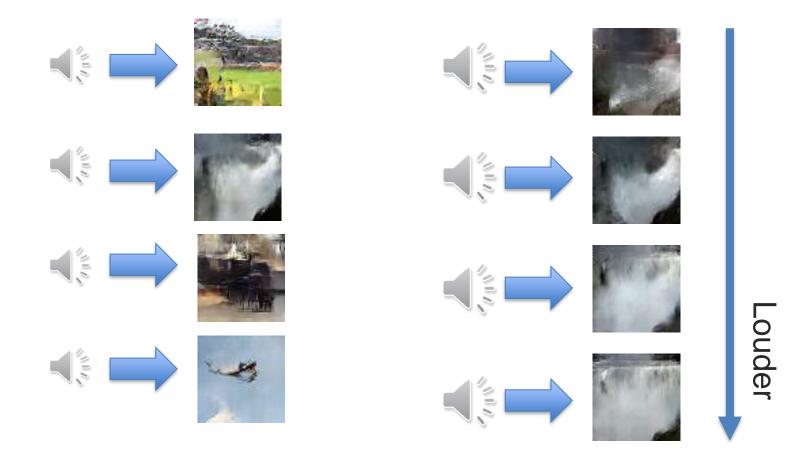


Example: Audio to Scene



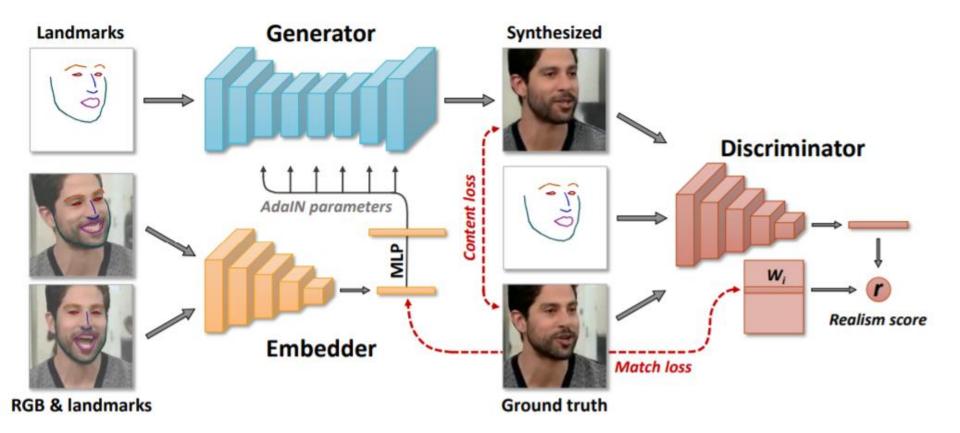
https://wjohn1483.github.io/audio_to_scene/index.html

Example: Audio to Scene



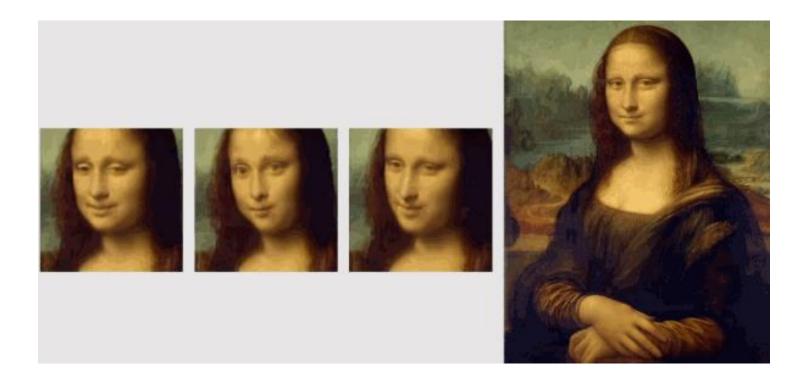
https://wjohn1483.github.io/audio_to_scene/index.html

Example: Talking Head

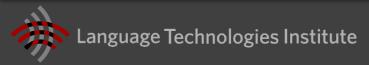


https://arxiv.org/abs/1905.08233

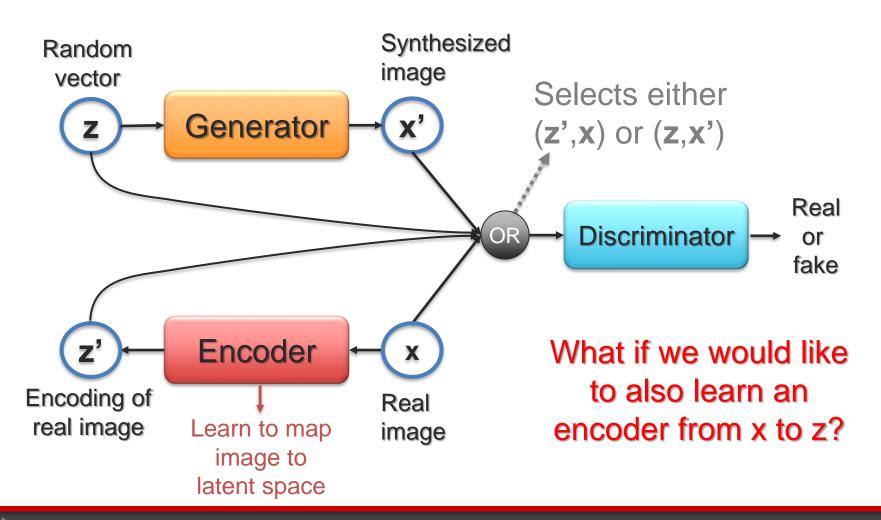
Example: Talking Head



https://arxiv.org/abs/1905.08233

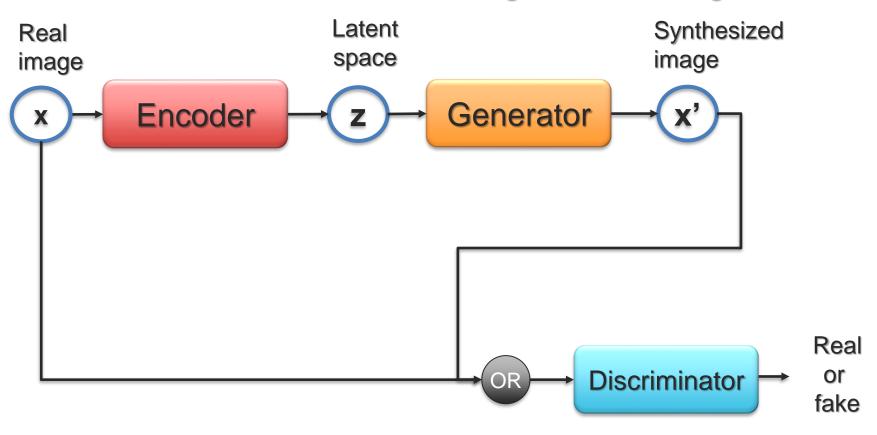


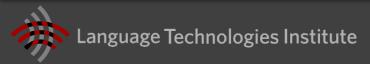
Bidirectional GAN



cAE-GAN

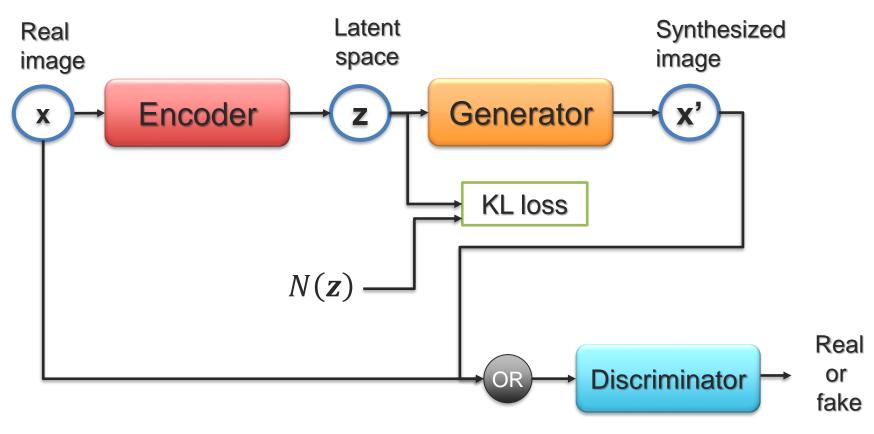
We can learn both encoder and generator using AE...





cVAE-GAN

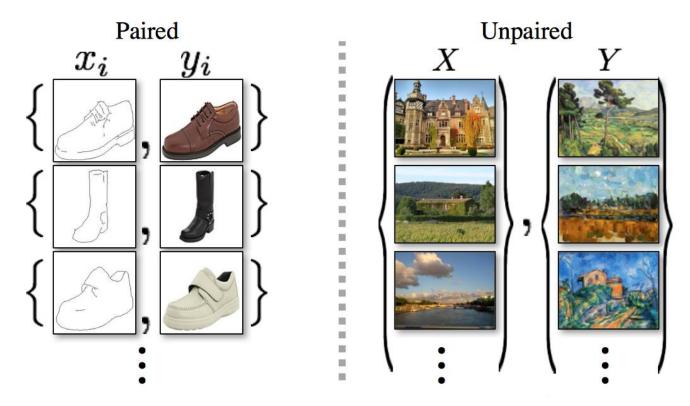
... or a Variational Auto-Encoder.



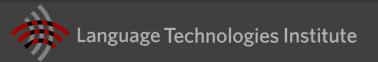


Paired and Unpaired Data

Many of these approaches use paired data...

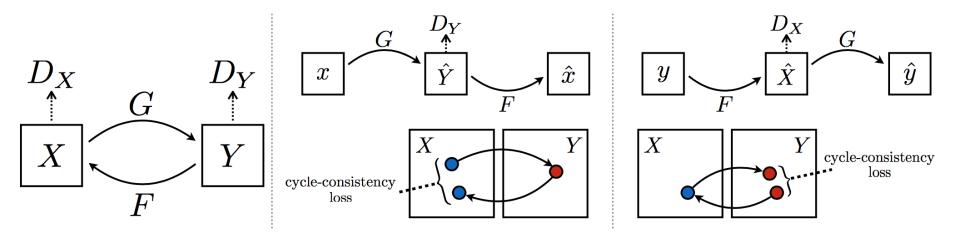


... but how to handle unpaired data?

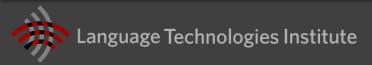


Cycle GAN

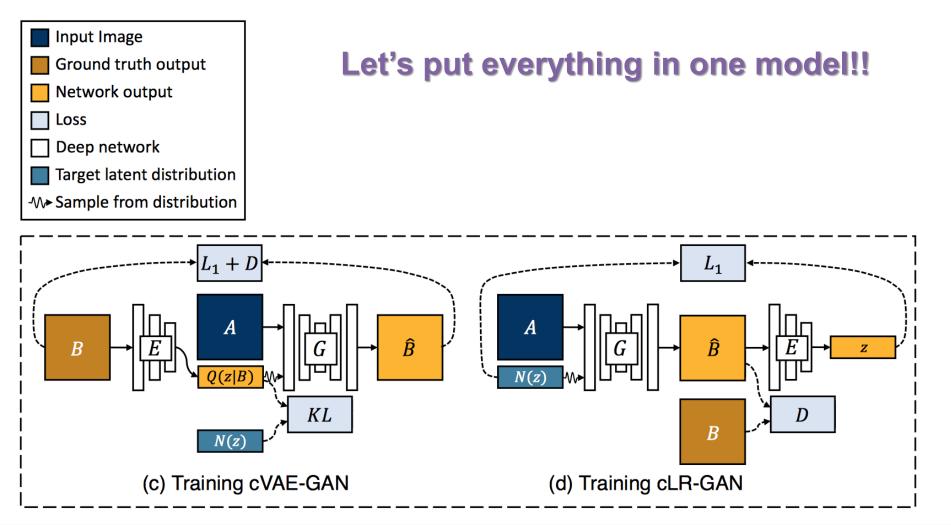
Idea 1: Let's have multiple discriminators and generators



Idea 2: Use two cycle-consistency losses, one for each view



BiCycle GAN



Language Technologies Institute

