

Language Technologies Institute

Multimodal Machine Learning

Lecture 8.1: Discriminative Graphical Models

Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Administrative Stuff

Language Technologies Institute

Piazza Live Q&A

Please share your questions and comments on Piazza Live Q&A

Live responses by your TAs and follow-up by the instructor after the main lecture

Language Technologies Institute

Multimodal Machine Learning

Lecture 8.1: Discriminative Graphical Models

Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Lecture Objectives

- Markov Random Fields
 - Boltzmann/Gibbs distribution
 - Factor graphs
- Conditional Random Fields
 - Multi-View Conditional Random Fields
- CRFs and Deep Learning
 - DeepConditional Neural Fields
 - CRF and Bilinear LSTM
- Continuous and Fully-Connected CRFs

Bidirectional and Cycle GAN

Example: Talking Head

https://arxiv.org/abs/1905.08233

Info GAN

Bidirectional GAN

Paired and Unpaired Data

Many of these approaches use paired data...

... but how to handle unpaired data?

Cycle GAN

Idea 1: Let's have multiple discriminators and generators

Quick Recap

Five Multimodal Core Challenges

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

Fusion and Representation – Neural Networks

Fusion – Probabilistic Graphical Models

Structured Prediction - Examples

Image "semantic" segmentation

We do not want to predict each pixel separately!

The output is a structured tree

Fusion – Probabilistic Graphical Models

But let's first do a historical detour...

Restricted Boltzmann Machines

Deep Multimodal Boltzmann machines

One of the first multimodal representation learning paper was using Boltzmann machines!

- Generative model: models the joint probability between modalities
- It can sample both text and image modalities

[Srivastava and Salakhutdinov, Multimodal Learning with Deep Boltzmann Machines, 2012, 2014]

Deep Multimodal Boltzmann Machines

Image

pentax, k10d, beach, sea, kangarooisland, surf, strand, southaustralia, shore, wave, sa, australia, seascape, australiansealion, sand, ocean, 300mm waves

Given Tags

night, lights, christmas, nightshot, nacht, nuit, notte, longexposure, noche, nocturna

Generated Tags

aheram, 0505 sarahc, moo

<no text>

unseulpixel, naturey crap portrait, bw,

blackandwhite, woman, people, faces, girl,blackwhite, person, man

fall, autumn, trees, leaves, foliage, forest, woods, branches, path

Deep Multimodal Boltzmann Machines

Performance on image retrieval task

Restricted Boltzmann Machine (RBM)

Undirected Graphical Model

- A generative rather than discriminative model
- Connections from every hidden unit to every visible one
- No connections across units (hence "Restricted"), makes it easier to train and run inference

[Smolensky, Information Processing in Dynamical Systems: Foundations of Harmony Theory, 1986]

Restricted Boltzmann Machine (RBM)

$$p(\mathbf{x}, \mathbf{h}; \theta) = \frac{\exp(-E(\mathbf{x}, \mathbf{h}; \theta))}{\sum_{\mathbf{x}'} \sum_{\mathbf{h}'} \exp(-E(\mathbf{x}', \mathbf{h}'; \theta))} - \frac{\text{Partition}}{\text{function } \mathbf{z}}$$

Hidden and visible layers are binary (e.g. $x = \{0, ..., 1, 0, 1\}$)

Model parameters $\theta = \{W, b, a\}$

$$E = -xWh - bx - ah$$

$$E = -\sum_{i}\sum_{j} w_{i,j}x_{i}h_{j} - \sum_{i} b_{i}x_{i} - \sum_{j} a_{j}h_{j}$$

Interaction Bias terms
term Visible layer

Boltzmann Machine

$$p(\boldsymbol{x}, \boldsymbol{h}; \theta) = \frac{\exp(-E(\boldsymbol{x}, \boldsymbol{h}; \theta))}{\sum_{\boldsymbol{x}'} \sum_{\boldsymbol{h}'} \exp(-E(\boldsymbol{x}', \boldsymbol{h}'; \theta))}$$

Hidden and visible layers are binary (e.g. $x = \{0, ..., 1, 0, 1\}$)

Statistical Mechanics: Boltzmann Distribution

[also called Gibbs measure]

$$p(\boldsymbol{h};\theta) = \frac{\exp(-E(\boldsymbol{h};\theta)/kT)}{\sum_{\boldsymbol{h}'} \exp(-E(\boldsymbol{h}';\theta)/kT)}$$

probability distribution that gives the probability that a system will be in a certain state h

 $E(h; \theta)$: Energy of state h

- k: Boltzmann constant
- T: Thermodynamic temperature

Markov Random Fields

$$p(H = \boldsymbol{h}; \theta) = \frac{\exp(-E(\boldsymbol{h}; \theta))}{\sum_{\boldsymbol{h}'} \exp(-E(\boldsymbol{h}'; \theta))} = \frac{\Phi(\boldsymbol{h}; \theta)}{\sum_{\boldsymbol{h}'} \Phi(\boldsymbol{h}'; \theta)}$$

Set of random variables *H* having a Markov property described by undirected graph

$$\Phi(\boldsymbol{h};\theta) = \prod_{k} \phi_{k}(\boldsymbol{h};\theta_{k}) \quad \begin{array}{l} \text{Potential} \\ \text{functions} \\ \phi_{k}(\boldsymbol{h};\theta) > 0 \\ \\ = \exp\left(-\sum_{k} E_{k}(\boldsymbol{h};\theta_{k})\right) \end{array}$$

$$p(H = \mathbf{h}; \theta) = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y}, \mathbf{x}; \theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}', \mathbf{x}; \theta)}$$

$$\Phi(\mathbf{h}; \theta) = \phi_{12}(h_{1}, h_{2}; \theta_{12}) \times$$

$$\phi_{16}(h_{1}, h_{6}; \theta_{16}) \times$$

$$\phi_{26}(h_{2}, h_{6}; \theta_{26}) \times$$

$$\phi_{25}(h_{2}, h_{5}; \theta_{25}) \times$$

$$\phi_{45}(h_{4}, h_{5}; \theta_{45}) \times$$

$$\phi_{34}(h_{3}, h_{4}; \theta_{34})$$

 h_2

 (h_3)

29

Markov Random Fields: Factor Graphs

$$p(H = h; \theta) = \frac{\Phi(h; \theta)}{\sum_{h'} \Phi(h'; \theta)} = \frac{\sum_{k} \phi_{k}(y, x; \theta)}{\sum_{y'} \sum_{k} \phi_{k}(y', x; \theta)}$$

$$\Phi(h; \theta) = \phi_{12}(h_{1}, h_{2}; \theta_{12}) \times$$

$$\phi_{16}(h_{1}, h_{6}; \theta_{16}) \times$$

$$\phi_{26}(h_{2}, h_{6}; \theta_{26}) \times$$

$$\phi_{25}(h_{2}, h_{5}; \theta_{25}) \times$$

$$\phi_{45}(h_{4}, h_{5}; \theta_{45}) \times$$

$$\phi_{34}(h_{3}, h_{4}; \theta_{34})$$

 h_2

 (h_3)

30

Markov Random Fields (Factor Graphs)

$$p(H = h; \theta) = \frac{\Phi(h; \theta)}{\sum_{h'} \Phi(h'; \theta)} = \frac{\sum_{k} \phi_{k}(y, x; \theta)}{\sum_{y'} \sum_{k} \phi_{k}(y', x; \theta)}$$

$$\Phi(h; \theta) = \phi_{12}(h_{1}, h_{2}; \theta_{12}) \times$$

$$\phi_{16}(h_{1}, h_{6}; \theta_{16}) \times$$

$$\phi_{26}(h_{2}, h_{6}; \theta_{26}) \times$$

$$\phi_{16}(h_{1}, h_{5}; \theta_{16}) \times$$

$$\phi_{25}(h_{2}, h_{5}; \theta_{25}) \times$$

$$\phi_{45}(h_{4}, h_{5}; \theta_{45}) \times$$

$$\phi_{34}(h_{3}, h_{4}; \theta_{34}) \times$$

$$\psi_{1}(h_{1}; \theta_{1}) \times \psi_{5}(h_{5}; \theta_{5})$$

$$\psi_{10}(h_{1}; \theta_{1}) \times \psi_{5}(h_{5}; \theta_{5})$$

$$\psi_{10}(h_{1}; \theta_{1}, h_{1}; \theta_{1}) \times \psi_{5}(h_{5}; \theta_{5})$$

Markov Random Fields – Clique Factorization

$$p(H = \mathbf{h}; \theta) = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y}, \mathbf{x}; \theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}', \mathbf{x}; \theta)}$$
Clique factorization
$$\Phi(\mathbf{h}; \theta) = \phi_{12}(h_{1}, h_{2}; \theta_{12}) \times$$

$$\phi_{16}(h_{1}, h_{6}; \theta_{16}) \times$$

$$\phi_{26}(h_{2}, h_{6}; \theta_{26}) \times$$

$$\phi_{25}(h_{2}, h_{5}; \theta_{25}) \times$$

$$\phi_{45}(h_{4}, h_{5}; \theta_{45}) \times$$

$$\phi_{34}(h_{3}, h_{4}; \theta_{34}) \times$$

$$\psi_{1}(h_{1}; \theta_{1}) \times \psi_{5}(h_{5}; \theta_{5})$$

$$\psi_{1}(h_{1}; \theta_{1}) \times \psi_{5}(h_{5}; \theta_{5})$$

$$\psi_{1}(h_{1}; \theta_{1}) \times \psi_{5}(h_{5}; \theta_{5})$$

$$\psi_{1}(h_{1}; \theta_{1}, h_{5}; \theta_{345})$$

Chain Markov Random Fields (Factor Graphs)

$$p(H = \mathbf{h}; \theta) = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y}, \mathbf{x}; \theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}', \mathbf{x}; \theta)}$$

$$\Phi(\mathbf{h}; \theta) = \phi_{12}(h_{1}, h_{2}; \theta_{12}) \times$$

$$\phi_{23}(h_{2}, h_{3}; \theta_{23}) \times$$

$$\phi_{34}(h_{3}, h_{4}; \theta_{34}) \times$$

$$\psi_{1}(h_{1}; \theta_{1}) \times$$

$$\psi_{2}(h_{2}; \theta_{2}) \times$$

$$\psi_{3}(h_{3}; \theta_{3}) \times$$

$$\psi_{4}(h_{4}; \theta_{4})$$

$$\psi_{1}(h_{4}; \theta_{4})$$

$$\psi_{2}(h_{2}; \theta_{2}) \times$$

$$\psi_{3}(h_{3}; \theta_{3}) \times$$

$$\psi_{4}(h_{4}; \theta_{4})$$

Example: Markov Random Field – Graphical Model

Language Technologies Institute

Example: Markov Random Field – Factor Graph

Example: Markov Random Field – Factor Graph

Language Technologies Institute

Example: Markov Random Field – Factor Graph

Language Technologies Institute

Conditional Random Fields

Conditional Random Fields (Factor Graphs)

$$p(\mathbf{y}|\mathbf{x};\theta) = \frac{\Phi(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\Phi(\mathbf{y}',\mathbf{x};\theta)} = \frac{\sum_{k}\phi_{k}(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\sum_{k}\phi_{k}(\mathbf{y}',\mathbf{x};\theta)}$$

$$\Phi(\mathbf{y},\mathbf{x};\theta) = \phi_{12}(y_{1},y_{2},\mathbf{x};\theta_{12}) \times$$

$$\phi_{23}(y_{2},y_{3},\mathbf{x};\theta_{23}) \times$$

$$\phi_{34}(y_{3},y_{4},\mathbf{x};\theta_{34}) \times$$

$$\psi_{1}(y_{1},\mathbf{x};\theta_{1}) \times$$

$$\psi_{2}(y_{2},\mathbf{x};\theta_{2}) \times$$

$$\psi_{1}\psi_{2}\psi_{3}\psi_{4}\psi_{4}\psi_{4}(y_{4},\mathbf{x};\theta_{4})$$

$$\psi_{1}(y_{4},\mathbf{x};\theta_{4})$$

$$\psi_{2}(y_{2},\mathbf{x};\theta_{3}) \times$$

$$\psi_{1}(y_{4},\mathbf{x};\theta_{4})$$

$$\psi_{2}(y_{2},\mathbf{x};\theta_{3}) \times$$

Conditional Random Fields (Factor Graphs)

$$p(\mathbf{y}|\mathbf{x};\theta) = \frac{\Phi(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\Phi(\mathbf{y}',\mathbf{x};\theta)} = \frac{\sum_{k}\phi_{k}(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\sum_{k}\phi_{k}(\mathbf{y}',\mathbf{x};\theta)}$$

$$\Phi(\mathbf{y},\mathbf{x};\theta) = \phi_{12}(y_{1},y_{2},\mathbf{x};\theta_{12}) \times$$

$$\phi_{23}(y_{2},y_{3},\mathbf{x};\theta_{23}) \times$$

$$\phi_{34}(y_{3},y_{4},\mathbf{x};\theta_{34}) \times$$

$$\psi_{1}(y_{1},x_{1};\theta_{1}) \times$$

$$\psi_{2}(y_{2},x_{2};\theta_{2}) \times$$

$$\psi_{1}\psi_{2}\psi_{3}\psi_{4}\psi_{4}\psi_{4}(y_{4},x_{4};\theta_{4})$$

$$\psi_{1}(y_{4},x_{4};\theta_{4})$$

$$\psi_{2}(y_{2},x_{2};\theta_{2}) \times$$

$$\psi_{1}\psi_{2}\psi_{3}\psi_{4}\psi_{4}\psi_{4}(y_{4},x_{4};\theta_{4})$$

$$\psi_{2}(y_{2},x_{2};\theta_{2}) \times$$

$$\psi_{1}\psi_{2}\psi_{3}\psi_{4}\psi_{4}\psi_{4}(y_{4},x_{4};\theta_{4})$$

Conditional Random Fields (Log-linear Model)

$$p(\mathbf{y}|\mathbf{x};\theta) = \frac{\Phi(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\Phi(\mathbf{y}',\mathbf{x};\theta)} = \frac{\sum_{k}\phi_{k}(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'}\sum_{k}\phi_{k}(\mathbf{y}',\mathbf{x};\theta)}$$
$$= \frac{\exp(\sum_{k}\theta_{k}f_{k}(\mathbf{y},\mathbf{x}))}{\sum_{\mathbf{y}'}\exp(\sum_{k}\theta_{k}f_{k}(\mathbf{y}',\mathbf{x}))}$$

 $f_k(\mathbf{y}, \mathbf{x})$: feature function

- Pairwise feature function $f_k(y_i, y_j, \mathbf{x}; \theta^e)$
- Unary feature function $f_k(y_i, \mathbf{x}; \theta^x)$

Learning Parameters of a CRF Model

 $\operatorname{argmax}\log(p(\boldsymbol{y}|\boldsymbol{x};\theta))$

- Gradient can be computed analytically
 - Inference of marginal probabilities using belief propagation (or loopy belief propagation for cyclic graphs)
- Optimized with stochastic or batch approaches

CRFs for Shallow Parsing

$$p(\boldsymbol{y}|\boldsymbol{x};\theta) = \frac{\Phi(\boldsymbol{y},\boldsymbol{x};\theta)}{\sum_{\boldsymbol{y}'}\Phi(\boldsymbol{y}',\boldsymbol{x};\theta)}$$

How many θ^x parameters?
What did θ^x learn?

> What did θ^e learn?

$$\begin{array}{c|ccccc} & & & \text{B-NP} & \text{I-NP} & \text{O} \\ \hline \\ \text{B-NP} & & & \\ \theta_{11} & & \theta_{21} & & \theta_{31} \\ \hline \\ \text{I-NP} & & & \\ \theta_{12} & & \theta_{22} & & \theta_{32} \\ \hline \\ \text{O} & & & \\ \theta_{13} & & \theta_{23} & & \theta_{33} \end{array}$$

Labels:

B-NP: Beginning of a noun phrase I-NP: Continuation of a noun phrase O: Outside a noun phrase Dictionary size: 10,000 words

Latent-Dynamic CRF

$$p(\mathbf{y}|\mathbf{x};\theta) = \sum_{\mathbf{h}} p(\mathbf{y}|\mathbf{h};\theta) p(\mathbf{h}|\mathbf{x};\theta) \quad \text{where} \quad p(\mathbf{y}|\mathbf{h};\theta) = \begin{cases} 1 & \text{if } \forall h_t \in \mathcal{H}_{y_t} \\ 0 & \text{otherwise} \end{cases}$$
$$= \sum_{\mathbf{h}:\forall h_t \in \mathcal{H}_{y_t}} p(\mathbf{h}|\mathbf{x};\theta) = \sum_{\mathbf{h}:\forall h_t \in \mathcal{H}_{y_t}} \frac{\Phi(\mathbf{h},\mathbf{x};\theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}',\mathbf{x};\theta)}$$

Latent variables (e.g., POS tags)

 $\boldsymbol{h} = \{h_1, h_2, h_3, \dots, h_t\}$ where $h_t \in \{\mathcal{H}_{\mathcal{Y}_t}\}$

For example:

 $\mathcal{H} = \{\mathcal{H}_{B-NP} \ \mathcal{H}_{I-NP} \ \mathcal{H}_{O}\}$

 $\mathcal{H} = \{B_1, B_2, B_3, B_4, I_1, I_2, I_3, I_4, 0_1, 0_2, 0_3, 0_4\}$ Dictionary size: 10,000 words

Language Technologies Institute

44

Latent-Dynamic CRF

$$p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\theta}) = \sum_{\boldsymbol{h}:\forall h_t \in \mathcal{H}_{y_t}} \frac{\exp(\sum_k \theta_k f_k(\boldsymbol{h}, \boldsymbol{x}))}{\sum_{\boldsymbol{h}'} \exp(\sum_k \theta_k f_k(\boldsymbol{h}', \boldsymbol{x}))}$$

> How many θ^x parameters? > How many θ^e parameters?

> What did θ^x learn?

> What did θ^e learn?

- Intrinsic dynamics
- Extrinsic dynamics

 $\label{eq:lass} \begin{array}{l} \text{Latent variables} & (\text{e.g., POS tags}) \\ & h = \{h_1, h_2, h_3, \dots, h_t\} & \text{where } h_t \in \{\mathcal{H}_{y_t}\} \end{array}$ $\mbox{For example:} \\ & \mathcal{H} = \{\mathcal{H}_{B-NP} \ \mathcal{H}_{I-NP} \ \mathcal{H}_0\} \end{array}$

 $\mathcal{H} = \{B_1, B_2, B_3, B_4, I_1, I_2, I_3, I_4, O_1, O_2, O_3, O_4\}$ Dictionary size: 10,000 words

Latent-Dynamic CRF for Shallow Parsing

Experiment – Analyzing latent variables

- Task: Shallow parsing with CoNLL 2000 dataset
- Input features: word feature only
- Output labels: Noun phrase labels
- 1) Select hidden state a^* with highest marginal: $a^* = \arg \max p(h_t = a | x; \theta)$
- 2) Compute relative frequency for each word

Label	State	Words	POS	Freq.		Label	State	Words	POS	Freq.
В	B_1	That	WDT	0.85			01	but	CC	0.88
		who	WP	0.49				by	IN	0.73
		Who	WP	0.33				or	IN	0.67
	<i>B</i> ₂	any	DT	1.00				4.6	CD	1.00
		an	DT	1.00			0_2	1	CD	1.00
		а	DT	0.98		\mathbf{O}	• 2	11	CD	0.62
	<i>B</i> ₃	They	PRP	1.00		\boldsymbol{U}	03	were	VBD	0.94
		we	PRP	1.00				rose	VBD	0.93
		he	PRP	1.00				have	VBP	0.92
	<i>B</i> ₄	Nasdaq	NNP	1.00			04	been	VBN	0.97
		Florida	NNP	0.99				be	VB	0.94
		cities	NNS	0.99				to	TO	0.92

Latent variables (e.g., POS tags)

 $\boldsymbol{h} = \{h_1, h_2, h_3, \dots, h_t\}$ where $h_t \in \{\mathcal{H}_{y_t}\}$

For example:

 $\mathcal{H} = \{\mathcal{H}_{B-NP} \ \mathcal{H}_{I-NP} \ \mathcal{H}_{O}\}$

 $\mathcal{H} = \{B_1, B_2, B_3, B_4, I_1, I_2, I_3, I_4, 0_1, 0_2, 0_3, 0_4\}$ Dictionary size: 10,000 words

Hidden Conditional Random Field

Learning Multimodal Structure

Modality-private structure

• Internal grouping of observations

Modality-shared structure

Interaction and synchrony

Multi-view Latent Variable Discriminative Models

Modality-private structure

Internal grouping of observations

Modality-shared structure

Interaction and synchrony

$$p(y|\mathbf{x}^{A}, \mathbf{x}^{V}; \boldsymbol{\theta}) = \sum_{\mathbf{h}^{A}, \mathbf{h}^{V}} p(y, \mathbf{h}^{A}, \mathbf{h}^{V} | \mathbf{x}^{A}, \mathbf{x}^{V}; \boldsymbol{\theta})$$

Approximate inference using loopy-belief

CRFs and Deep Learning

Conditional Neural Fields

θ

W

Deep Conditional Neural Fields

$$\begin{aligned} \mathcal{G}^{l}(x_{i},W^{l}) &= \left[g_{1}^{l}(x_{i} \cdot W_{1}^{l}), g_{2}^{l}(x_{t} \cdot W_{1}^{l}), \dots, g_{n}^{l}(x_{i} \cdot W_{n}^{l})\right] \\ p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{\theta}) &\propto \exp\left\{\sum_{i} \boldsymbol{\theta}^{x} \cdot f^{x}(y_{i}, \mathbf{x}_{i}) + \sum_{i} \boldsymbol{\theta}^{e} \cdot f^{e}(y_{i}, y_{i-1})\right\} \\ \begin{pmatrix} \psi_{1} & \psi_{2} & \psi_{3} & \psi_{4} \\ \psi_{2} & \psi_{3} & \psi_{4} & f^{x}(y_{i}, \mathbf{x}_{i}) = \mathbb{I}[y_{i} = y'] \cdot \mathcal{G}(a_{i}^{m-1}, W^{l}) \\ \varphi_{1}^{x} & \varphi_{2}^{x} & \varphi_{3}^{x} & \varphi_{4}^{x} & \varphi_{4}^{x} \\ g_{1}^{2} & g_{2}^{2} & g_{3}^{2} & g_{4}^{2} \\ W^{2} & W^{2} & W^{2} & W^{2} \\ g_{1}^{1} & g_{2}^{1} & g_{3}^{1} & g_{4}^{1} \\ W^{1} & W^{1} & W^{1} & W^{1} \\ \chi_{1} & \chi_{2} & \chi_{3}^{x} & \chi_{4} \end{aligned} \right]$$

CRF and Bilinear LSTM [Dyer, 2016]

Learning:

- 1. Feedforward
- 2. Gradient a) Belief
 - propagation
- 3. Backpropagation

Output labels:

Name entities

Input features:

Word embedding

- > What did θ^e paramters learn?
- What does LSTM parameters learns?

CNN and CRF and Bilinear LSTM [Hovy, 2016]

Learning:

- 1. Feedforward
- 2. Gradient a) Belief
 - *propagation*
- 3. Backpropagation

Output labels:

Name entities

- Input features:
 - Character
 embedding

Continuous and Fully-Connected CRFs

Language Technologies Institute

Continuous Conditional Neural Field [Baltrusaitis 2014] 0.3 0.2 0.7 **0.8** 0.5 Continuous output variables: (e.g., continuous emotional label) $y = \{y_1, y_2, y_3, ..., y_t\}$ where $y_t \in \mathbb{R}$ $p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{\mathcal{Z}(\mathbf{x};\boldsymbol{\theta})} \exp\left\{\sum_{t} \boldsymbol{\theta} \cdot F(y_t, y_{t-1}, \mathbf{x}_t, \boldsymbol{\theta}^g)\right\}$ **g**₂ **g**3) $\boldsymbol{g_1}$ g_4 **g**₅ X₂ **X**5 **X**₁ ้Xว X $\mathcal{Z}(\mathbf{x};\boldsymbol{\theta}) = \int_{-\infty}^{\infty} \exp\left\{\sum \boldsymbol{\theta} \cdot F(y_t, y_{t-1}, \mathbf{x}_t, \boldsymbol{\theta}^g)\right\} d\boldsymbol{y}$ the yellowdog We saw **Multivariate Gaussian integral:** How to solve $\int_{-\infty}^{\infty} \exp\{\frac{1}{2} \mathbf{y}^T \Sigma^{-1} \mathbf{y} + \mathbf{y} \Sigma^{-1} \boldsymbol{\mu}\} d\mathbf{y}$ $= \frac{(2\pi)^{n/2}}{|\Sigma^{-1}|^{1/2}} \exp\left(\frac{1}{2}\boldsymbol{\mu} \Sigma^{-1}\boldsymbol{\mu}\right)$ [Radosavljevic et al., 2010] Language Technologies

Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

$$y = \{y_1, y_2, y_3, \dots, y_t\}$$
 where $y_t \in \mathbb{R}$

$$p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{\mathcal{Z}(\mathbf{x};\boldsymbol{\theta})} \exp\left\{\sum_{t} \boldsymbol{\theta} \cdot F(y_{t}, y_{t-1}, \mathbf{x}_{t}, \boldsymbol{\theta}^{g})\right\}$$

$$Z(\mathbf{x};\boldsymbol{\theta}) = \int_{-\infty}^{\infty} \exp\left\{\sum_{t} \boldsymbol{\theta} \cdot F(y_{t}, y_{t-1}, \mathbf{x}_{t}, \boldsymbol{\theta}^{g})\right\} d\boldsymbol{y}$$

$$f^{x}(y_{t}, x_{t}, \theta^{g}) = -(y_{t} - g_{k}(x_{t}, \theta^{g}_{k}))^{2}$$
$$f^{e}(y_{t}, y_{t-1}) = -\frac{1}{2}(y_{t} - y_{t-1})^{2}$$

.

Continuous Conditional Neural Field

High-Order Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

 $y = \{y_1, y_2, y_3, \dots, y_t\}$ where $y_t \in \mathbb{R}$

Multivariate Gaussian distribution:

$$p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\theta}) = \frac{1}{(2\pi)^n/2|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right)$$

k-order potential functions:

$$f^{e_{k}}(y_{t}, y_{t-k}) = -\frac{1}{2}(y_{t} - y_{t-k})^{2}$$

Fully-Connected Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

 $y = \{y_1, y_2, y_3, \dots, y_t\}$ where $y_t \in \mathbb{R}$

Multivariate Gaussian distribution:

$$p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\theta}) = \frac{1}{(2\pi)^{n/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right)$$

k-order potential functions:

$$f^{e_{k}}(y_{t}, y_{t-k}) = -\frac{1}{2}(y_{t} - y_{t-k})^{2}$$

Grid potential functions:

$$f^{2D}(y_i, y_j) = -\frac{1}{2} S_{ij} (y_i - y_j)^2$$

where $S_{i,j}$ specifies which nodes are connected.

Fully-Connected CRF [Krahenbuhl and Koltun, 2013]

y_i: object class label

 x_i : local pixel features

$$p(\boldsymbol{y}|\boldsymbol{x};\theta) = \frac{\Phi(\boldsymbol{y},;\theta)}{\sum_{\boldsymbol{y}'}\Phi(\boldsymbol{y}',\boldsymbol{x};\theta)}$$
Mixture of kernels
where $\Phi_{ij}(y_i,y_j;\theta) = \sum_{m=1}^{C} u^{(m)}(y_i,y_j|\theta)k^{(m)}(\boldsymbol{x}_i,\boldsymbol{x}_j)$

CNN and Fully-Connected CRF [Chen et al., 2014]

Fully Connected Deep Structured Networks [Zheng et al., 2015; Schwing and Urtasun, 2015]

Algorithm: Learning Fully Connected Deep Structured Models Repeat until stopping criteria

- 1. Forward pass to compute $f_r(x, \hat{y}_r; w) \ \forall r \in \mathcal{R}, y_r \in \mathcal{Y}_r$
- 2. Computation of marginals $q_{(x,y),i}^t(\hat{y}_i)$ via filtering for $t \in \{1, \ldots, T\}$
- 3. Backtracking through the marginals $q_{(x,y),i}^t(\hat{y}_i)$ from t = T 1 down to t = 1

4. Backward pass through definition of function via chain rule

5. Parameter update

Using mean field

approximation

Fully-Connected Temporal CRF

Fully-connected CRF applied to video sequence:

64

Sigurdsson et al., Asynchronous Temporal Fields for Action Recognition, CVPR 2017

Soft-Label Chain CRF

Language Technologies Institute

Two main problems:

(1) Dependencies between entities

Cheerleaders at a sporting event toss a girl high up into the air.

(2) Multiple region proposals

Old man sits on rocks while working with his hands .

Liu J, Hockenmaier J. "Phrase Grounding by Soft-Label Chain Conditional Random Field" EMNLP 2019

Two main problems:

(1) Dependencies between entities

Cheerleaders at a sporting event toss a girl high up into the air.

(2) Multiple region proposals

Old man sits on rocks while working with his hands .

Solution: Formulate the phrase grounding as a **sequence labeling task**

- ❑ Treat the candidate regions as potential labels
- □ Propose the Soft-Label Chain CRFs to model **dependencies** among regions
- □ Address the **multiplicity** of gold labels

$$p(\boldsymbol{y}|\boldsymbol{x}) = \frac{\exp s(\boldsymbol{y}, \boldsymbol{x})}{\sum_{\boldsymbol{y}'} \exp s(\boldsymbol{y}', \boldsymbol{x})}$$

- Input sequence: $x = x^{1:T}$
- Label sequence: $y = y^{1:T}$
- Score function: s(x, y)

Standard CRF

Cross-entropy Loss: L = − log p(y|x) = −s(y, x) + log Z(x)
 ≽ Each input xⁱ is associated to only one label yⁱ

Soft-Label CRF:

• KL-divergence between the model and target distribution:

$$L = \sum_{oldsymbol{y}} \left\{ q(oldsymbol{y} | oldsymbol{x}) \log rac{q(oldsymbol{y} | oldsymbol{x})}{p(oldsymbol{y} | oldsymbol{x})}
ight\}$$

- Sequence of target distribution: $q = q^{1:T}$
- Label distribution over all K possible

labels for input x^t : $q^t \in \mathbb{R}^K$

> Each input x^i is associated to a distribution of labels y^i

Liu J, Hockenmaier J. "Phrase Grounding by Soft-Label Chain Conditional Random Field" EMNLP 2019

For efficiency: Reduce the model to a first-order linear chain CRF, whose scoring function factorizes as:

$$egin{aligned} s(oldsymbol{y},oldsymbol{x}) &= \sum_t s(y^t,y^{t-1},oldsymbol{x}) \ &= \sum_t \left\{ au(y^t,y^{t-1},oldsymbol{x}) + arepsilon(y^t,oldsymbol{x})
ight\} \end{aligned}$$

where $\tau(\cdot, \cdot, \cdot)$ are the pairwise potentials between labels at t - 1 and $t \\ \varepsilon(\cdot, \cdot)$ are the unary potentials between label and input at t

Liu J, Hockenmaier J. "Phrase Grounding by Soft-Label Chain Conditional Random Field" EMNLP 2019

Liu J, Hockenmaier J. "Phrase Grounding by Soft-Label Chain Conditional Random Field" EMNLP 2019

