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Abstract

Multiple modalities often co-occur when describing natural phenomena. Learning
a joint representation of these modalities should yield deeper and more useful
representations. Previous generative approaches to multi-modal input either do
not learn a joint distribution or require additional computation to handle missing
data. Here, we introduce a multimodal variational autoencoder (MVAE) that uses
a product-of-experts inference network and a sub-sampled training paradigm to
solve the multi-modal inference problem. Notably, our model shares parameters
to efficiently learn under any combination of missing modalities. We apply the
MVAE on four datasets and match state-of-the-art performance using many fewer
parameters. In addition, we show that the MVAE is directly applicable to weakly-
supervised learning, and is robust to incomplete supervision. We then consider two
case studies, one of learning image transformations—edge detection, colorization,
segmentation—as a set of modalities, followed by one of machine translation
between two languages. We find appealing results across this range of tasks.

1 Introduction

Learning from diverse modalities has the potential to yield more generalizable representations. For
instance, the visual appearance and tactile impression of an object converge on a more invariant
abstract characterization [32]. Similarly, an image and a natural language caption can capture
complimentary but converging information about a scene [28, 31]. While fully-supervised deep
learning approaches can learn to bridge modalities, generative approaches promise to capture the joint
distribution across modalities and flexibly support missing data. Indeed, multimodal data is expensive
and sparse, leading to a weakly supervised setting of having only a small set of examples with all
observations present, but having access to a larger dataset with one (or a subset of) modalities.

We propose a novel multimodal variational autoencoder (MVAE) to learn a joint distribution under
weak supervision. The VAE [11] jointly trains a generative model, from latent variables to obser-
vations, with an inference network from observations to latents. Moving to multiple modalities
and missing data, we would naively need an inference network for each combination of modalities.
However, doing so would result in an exponential explosion in the number of trainable parameters.
Assuming conditional independence among the modalities, we show that the correct inference net-
work will be a product-of-experts [8], a structure which reduces the number of inference networks
to one per modality. While the inference networks can be best trained separately, the generative
model requires joint observations. Thus we propose a sub-sampled training paradigm in which
fully-observed examples are treated as both fully and partially observed (for each gradient update).
Altogether, this provides a novel and useful solution to the multi-modal inference problem.
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We report experiments to measure the quality of the MVAE, comparing with previous models.
We train on MNIST [14], binarized MNIST [13], MultiMNIST [6, 20], FashionMNIST [30], and
CelebA [15]. Several of these datasets have complex modalities—character sequences, RGB images—
requiring large inference networks with RNNs and CNNs. We show that the MVAE is able to support
heavy encoders with thousands of parameters, matching state-of-the-art performance.

We then apply the MVAE to problems with more than two modalities. First, we revisit CelebA,
this time fitting the model with each of the 18 attributes as an individual modality. Doing so, we
find better performance from sharing of statistical strength. We further explore this question by
choosing a handful of image transformations commonly studied in computer vision—colorization,
edge detection, segmentation, etc.—and synthesizing a dataset by applying them to CelebA. We show
that the MVAE can jointly learn these transformations by modeling them as modalities.

Finally, we investigate how the MVAE performs under incomplete supervision by reducing the number
of multi-modal examples. We find that the MVAE is able to capture a good joint representation when
only a small percentage of examples are multi-modal. To show real world applicability, we then
investigate weak supervision on machine translation where each language is a modality.

2 Methods

A variational autoencoder (VAE) [11] is a latent variable generative model of the form pθ(x, z) =
p(z)pθ(x|z) where p(z) is a prior, usually spherical Gaussian. The decoder, pθ(x|z), consists of a
deep neural net, with parameters θ, composed with a simple likelihood (e.g. Bernoulli or Gaussian).
The goal of training is to maximize the marginal likelihood of the data (the “evidence”); however
since this is intractable, the evidence lower bound (ELBO) is instead optimized. The ELBO is defined
via an inference network, qφ(z|x), which serves as a tractable importance distribution:

ELBO(x) , Eqφ(z|x)[λ log pθ(x|z)]− β KL[qφ(z|x), p(z)] (1)

where KL[p, q] is the Kullback-Leibler divergence between distributions p and q; β [7] and λ are
weights balancing the terms in the ELBO. In practice, λ = 1 and β is slowly annealed to 1 [2] to
form a valid lower bound on the evidence. The ELBO is usually optimized (as we will do here) via
stochastic gradient descent, using the reparameterization trick to estimate the gradient [11].
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Figure 1: (a) Graphical model of the MVAE. Gray circles represent observed variables. (b) MVAE
architecture with N modalities. Ei represents the i-th inference network; µi and σi represent the
i-th variational parameters; µ0 and σ0 represent the prior parameters. The product-of-experts (PoE)
combines all variational parameters in a principled and efficient manner. (c) If a modality is missing
during training, we drop the respective inference network. Thus, the parameters of E1, ..., EN are
shared across different combinations of missing inputs.

In the multimodal setting we assume the N modalities, x1, ..., xN , are conditionally independent
given the common latent variable, z (See Fig. 1a). That is we assume a generative model of the
form pθ(x1, x2, ..., xN , z) = p(z)pθ(x1|z)pθ(x2|z) · · · pθ(xN |z). With this factorization, we can
ignore unobserved modalities when evaluating the marginal likelihood. If we write a data point as the
collection of modalities present, that is X = {xi|ith modality present}, then the ELBO becomes:

ELBO(X) , Eqφ(z|X)[
∑
xi∈X

λi log pθ(xi|z)]− β KL[qφ(z|X), p(z)]. (2)
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2.1 Approximating The Joint Posterior

The first obstacle to training the MVAE is specifying the 2N inference networks, q(z|X) for each
subset of modalities X ⊆ {x1, x2, ..., xN}. Previous work (e.g. [23, 26]) has assumed that the
relationship between the joint- and single-modality inference networks is unpredictable (and therefore
separate training is required). However, the optimal inference network q(z|x1, ..., xN ) would be the
true posterior p(z|x1, ..., xN ). The conditional independence assumptions in the generative model
imply a relation among joint- and single-modality posteriors:

p(z|x1, ..., xN ) =
p(x1, ..., xN |z)p(z)
p(x1, ..., xN )

=
p(z)

p(x1, ..., xN )

N∏
i=1

p(xi|z)

=
p(z)

p(x1, ..., xN )

N∏
i=1

p(z|xi)p(xi)
p(z)

=

∏N
i=1 p(z|xi)∏N−1
i=1 p(z)

·
∏N
i=1 p(xi)

p(x1, ..., xN )

∝
∏N
i=1 p(z|xi)∏N−1
i=1 p(z)

(3)

That is, the joint posterior is a product of individual posteriors, with an additional quotient by the prior.
If we assume that the true posteriors for each individual factor p(z|xi) is properly contained in the
family of its variational counterpart1, q(z|xi), then Eqn. 3 suggests that the correct q(z|x1, ..., xN ) is

a product and quotient of experts:
∏N
i=1 q(z|xi)∏N−1
i=1 p(z)

, which we call MVAE-Q.

Alternatively, if we approximate p(z|xi) with q(z|xi) ≡ q̃(z|xi)p(z), where q̃(z|xi) is the underlying
inference network, we can avoid the quotient term:

p(z|x1, ..., xN ) ∝
∏N
i=1 p(z|xi)∏N−1
i=1 p(z)

≈
∏N
i=1[q̃(z|xi)p(z)]∏N−1

i=1 p(z)
= p(z)

N∏
i=1

q̃(z|xi). (4)

In other words, we can use a product of experts (PoE), including a “prior expert”, as the approximating
distribution for the joint-posterior (Figure 1b). This representation is simpler and, as we describe
below, numerically more stable. This derivation is easily extended to any subset of modalities yielding
q(z|X) ∝ p(z)

∏
xi∈X q̃(z|xi) (Figure 1c). We refer to this version as MVAE.

The product and quotient distributions required above are not in general solvable in closed form.
However, when p(z) and q̃(z|xi) are Gaussian there is a simple analytical solution: a product
of Gaussian experts is itself Gaussian [5] with mean µ = (

∑
i µiTi)(

∑
i Ti)−1 and covariance

V = (
∑
i Ti)−1, where µi, Vi are the parameters of the i-th Gaussian expert, and Ti = V −1i is the

inverse of the covariance. Similarly, given two Gaussian experts, p1(x) and p2(x), we can show
that the quotient (QoE), p1(x)p2(x)

, is also a Gaussian with mean µ = (T1µ1 − T2µ2)(T1 − T2)
−1 and

covariance V = (T1 − T2)
−1, where Ti = V −1i . However, this distribution is well-defined only if

V2 > V1 element-wise—a simple constraint that can be hard to deal with in practice. A full derivation
for PoE and QoE can be found in the supplement.

Thus we can compute all 2N multi-modal inference networks required for MVAE efficiently in terms
of the N uni-modal components, q̃(z|xi); the additional quotient needed by the MVAE-Q variant is
also easily calculated but requires an added constraint on the variances.

2.2 Sub-sampled Training Paradigm

On the face of it, we can now train the MVAE by simply optimizing the evidence lower bound given
in Eqn. 2. However, a product-of-Gaussians does not uniquely specify its component Gaussians.
Hence, given a complete dataset, with no missing modalities, optimizing Eqn. 2 has an unfortunate
consequence: we never train the individual inference networks (or small sub-networks) and thus do
not know how to use them if presented with missing data at test time. Conversely, if we treat every
observation as independent observations of each modality, we can adequately train the inference
networks q̃(z|xi), but will fail to capture the relationship between modalities in the generative model.

1Without this assumption, the best approximation to a product of factors may not be the product of the best
approximations for each individual factor. But, the product of q(z|xi) is still a tractable family of approximations.
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We propose instead a simple training scheme that combines these extremes, including ELBO
terms for whole and partial observations. For instance, with N modalities, a complete example,
{x1, x2, ..., xN} can be split into 2N partial examples: {x1}, {x2, x6}, {x5, xN−4, xN}, .... If we
were to train using all 2N subsets it would require evaluating 2N ELBO terms. This is computa-
tionally intractable. To reduce the cost, we sub-sample which ELBO terms to optimize for every
gradient step. Specifically, we choose (1) the ELBO using the product of all N Gaussians, (2) all
ELBO terms using a single modality, and (3) k ELBO terms using k randomly chosen subsets, Xk.
For each minibatch, we thus evaluate a random subset of the 2N ELBO terms. In expectation, we
will be approximating the full objective. The sub-sampled objective can be written as:

ELBO(x1, ..., xN ) +

N∑
i=1

ELBO(xi) +

k∑
j=1

ELBO(Xj) (5)

We explore the effect of k in Sec. 5. A pleasant side-effect of this training scheme is that it generalizes
to weakly-supervised learning. Given an example with missing data, X = {xi|ith modality present},
we can still sample partial data from X , ignoring modalities that are missing.

3 Related Work

Given two modalities, x1 and x2, many variants of VAEs [11, 10] have been used to train generative
models of the form p(x2|x1), including conditional VAEs (CVAE) [21] and conditional multi-modal
autoencoders (CMMA) [17]. Similar work has explored using hidden features from a VAE trained on
images to generate captions, even in the weakly supervised setting [18]. Critically, these models are
not bi-directional. We are more interested in studying models where we can condition interchangeably.
For example, the BiVCCA [29] trains two VAEs together with interacting inference networks to
facilitate two-way reconstruction. However, it does not attempt to directly model the joint distribution,
which we find empirically to improve the ability of a model to learn the data distribution.

Several recent models have tried to capture the joint distribution explicitly. [23] introduced the joint
multi-modal VAE (JMVAE), which learns p(x1, x2) using a joint inference network, q(z|x1, x2). To
handle missing data at test time, the JMVAE collectively trains q(z|x1, x2) with two other inference
networks q(z|x1) and q(z|x2). The authors use an ELBO objective with two additional divergence
terms to minimize the distance between the uni-modal and the multi-modal importance distributions.
Unfortunately, the JMVAE trains a new inference network for each multi-modal subset, which we
have previously argued in Sec. 2 to be intractable in the general setting.

Most recently, [26] introduce another objective for the bi-modal VAE, which they call the triplet
ELBO. Like the MVAE, their model’s joint inference network q(z|x1, x2) combines variational
distributions using a product-of-experts rule. Unlike the MVAE, the authors report a two-stage
training process: using complete data, fit q(z|x1, x2) and the decoders. Then, freezing p(x1|z) and
p(x2|z), fit the uni-modal inference networks, q(z|x1) and q(z|x2) to handle missing data at test
time. Crucially, because training is separated, the model has to fit 2 new inference networks to handle
all combinations of missing data in stage two. While this paradigm is sufficient for two modalities, it
does not generalize to the truly multi-modal case. To the best of our knowledge, the MVAE is the first
deep generative model to explore more than two modalities efficiently. Moreover, the single-stage
training of the MVAE makes it uniquely applicable to weakly-supervised learning.

Our proposed technique resembles established work in several ways. For example, PoE is reminiscent
of a restricted Boltzmann machine (RBM), another latent variable model that has been applied to
multi-modal learning [16, 22]. Like our inference networks, the RBM decomposes the posterior into
a product of independent components. The benefit that a MVAE offers over a RBM is a simpler
training algorithm via gradient descent rather than requiring contrastive divergence, yielding faster
models that can handle more data. Our sub-sampling technique is somewhat similar to denoising
[27, 16] where a subset of inputs are “partially destructed" to encourage robust representations in
autoencoders. In our case, we can think of “robustness" as capturing the true marginal distributions.

4 Experiments

As in previous literature, we transform uni-modal datasets into multi-modal problems by treating
labels as a second modality. We compare existing models (VAE, BiVCCA, JMVAE) to the MVAE
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and show that we equal state-of-the-art performance on four image datasets: MNIST, FashionMNIST,
MultiMNIST, and CelebA. For each dataset, we keep the network architectures consistent across
models, varying only the objective and training procedure. Unless otherwise noted, given images x1
and labels x2, we set λ1 = 1 and λ2 = 50. We find that upweighting the reconstruction error for the
low-dimensional modalities is important for learning a good joint distribution.

Model BinaryMNIST MNIST FashionMNIST MultiMNIST CelebA
VAE 730240 730240 3409536 1316936 4070472
CVAE 735360 735360 3414656 – 4079688
BiVCCA 1063680 1063680 3742976 1841936 4447504
JMVAE 2061184 2061184 7682432 4075064 9052504
MVAE-Q 1063680 1063680 3742976 1841936 4447504
MVAE 1063680 1063680 3742976 1841936 4447504
JMVAE19 – – – – 3.6259e12
MVAE19 – – – – 10857048

Table 1: Number of inference network parameters. For a single dataset, each generative model uses
the same inference network architecture(s) for each modality. Thus, the difference in parameters is
solely due to how the inference networks interact in the model. We note that MVAE has the same
number of parameters as BiVCCA. JMVAE19 and MVAE19 show the number of parameters using
19 inference networks when each of the attributes in CelebA is its own modality.

Our version of MultiMNIST contains between 0 and 4 digits composed together on a 50x50 canvas.
Unlike [6], the digits are fixed in location. We generate the second modality by concatenating digits
from top-left to bottom-right to form a string. As in literature, we use a RNN encoder and decoder
[2]. Furthermore, we explore two versions of learning in CelebA, one where we treat the 18 attributes
as a single modality, and one where we treat each attribute as its own modality for a total of 19. We
denote the latter as MVAE19. In this scenario, to approximate the full objective, we set k = 1 for a
total 21 ELBO terms (as in Eqn. 5). For complete details, including training hyperparameters and
encoder/decoder architecture specification, refer to the supplement.

5 Evaluation

In the bi-modal setting with x1 denoting the image and x2 denoting the label, we measure the test
marginal log-likelihood, log p(x1), and test joint log-likelihood log p(x1, x2) using 100 importance
samples in CelebA and 1000 samples in other datasets. In doing so, we have a choice of which infer-
ence network to use. For example, using q(z|x1), we estimate log p(x1) ≈ log Eq(z|x1)[

p(x1|z)p(z)
q(z|x1)

].
We also compute the test conditional log-likelihood log p(x1|x2), as a measure of classification
performance, as done in [23]: log p(x1|x2) ≈ log Eq(z|x2)[

p(x1|z)p(x2|z)p(z)
q(z|x2)

] − log Ep(z)[p(x2|z)].
In CelebA, we use 1000 samples to estimate Ep(z)[p(x2|z)]. In all others, we use 5000 samples.
These marginal probabilities measure the ability of the model to capture the data distribution and its
conditionals. Higher scoring models are better able to generate proper samples and convert between
modalities, which is exactly what we find desirable in a generative model.

Quality of the Inference Network In all VAE-family models, the inference network functions
as an importance distribution for approximating the intractable posterior. A better importance
distribution, which more accurately approximates the posterior, results in importance weights with
lower variance. Thus, we estimate the variance of the (log) importance weights as a measure of
inference network quality (see Table 3).

Fig. 2 shows image samples and conditional image samples for each dataset using the image generative
model. We find the samples to be good quality, and find conditional samples to be largely correctly
matched to the target label. Table 2 shows test log-likelihoods for each model and dataset.2 We see
that MVAE performs on par with the state-of-the-art (JMVAE) while using far fewer parameters
(see Table 1). When considering only p(x1) (i.e. the likelihood of the image modality alone), the

2These results used q(z|x1) as the importance distribution. See supplement for similar results using
q(z|x1, x2). Because importance sampling with either q(z|x1) or q(z|x1, x2) yields an unbiased estimator of
marginal likelihood, we expect the log-likelihoods to agree asymptotically.
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Model BinaryMNIST MNIST FashionMNIST MultiMNIST CelebA
Estimated log p(x1)

VAE -86.313 -91.126 -232.758 -152.835 -6237.120
BiVCCA -87.354 -92.089 -233.634 -202.490 -7263.536
JMVAE -86.305 -90.697 -232.630 -152.787 -6237.967
MVAE-Q -91.665 -96.028 -236.081 -166.580 -6290.085
MVAE -86.026 -90.619 -232.535 -152.761 -6236.923
MVAE19 – – – – -6236.109

Estimated log p(x1, x2)
JMVAE -86.371 -90.769 -232.948 -153.101 -6242.187
MVAE-Q -92.259 -96.641 -236.827 -173.615 -6294.861
MVAE -86.255 -90.859 -233.007 -153.469 -6242.034
MVAE19 – – – – -6239.944

Estimated log p(x1|x2)
CVAE -83.448 -87.773 -229.667 – -6228.771
JMVAE -83.985 -88.696 -230.396 -145.977 -6231.468
MVAE-Q -90.024 -94.347 -234.514 -163.302 -6311.487
MVAE -83.970 -88.569 -230.695 -147.027 -6234.955
MVAE19 – – – – -6233.340

Table 2: Estimates (using q(z|x1)) for marginal probabilities on the average test example. MVAE
and JMVAE are roughly equivalent in data log-likelihood but as Table 1 shows, MVAE uses far fewer
parameters. The CVAE is often better at capturing p(x1|x2) but does not learn a joint distribution.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Image samples using MVAE. (a, c, e, g) show 64 images per dataset by sampling z ∼ p(z)
and then generating via p(x1|z). Similarly, (b, d, f, h) show conditional image reconstructions by
sampling z ∼ q(z|x2) where (b) x2 = 5, (d) x2 = Ankle boot, (f) x2 = 1773, (h) x2 = Male.

MVAE also performs best, slightly beating even the image-only VAE, indicating that solving the
harder multi-modal problem does not sacrifice any uni-modal model capacity and perhaps helps. On
CelebA, MVAE19 (which treats features as independent modalities) out-performs the MVAE (which
treats the feature vector as a single modality). This suggests that the PoE approach generalizes to a
larger number of modalities, and that jointly training shares statistical strength. Moreover, we show
in the supplement that the MVAE19 is robust to randomly dropping modalities.

Tables 3 show variances of log importance weights. The MVAE always produces lower variance than
other methods that capture the joint distribution, and often lower than conditional or single-modality
models. Furthermore, MVAE19 consistently produces lower variance than MVAE in CelebA. Overall,
this suggests that the PoE approach used by the MVAE yields better inference networks.
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Model BinaryMNIST MNIST FashionMNIST MultiMNIST CelebA
Variance of Marginal Log Importance Weights: var(log( p(x1,z)

q(z|x1)
))

VAE 22.264 26.904 25.795 54.554 56.291
BiVCCA 55.846 93.885 33.930 185.709 429.045
JMVAE 39.427 37.479 53.697 84.186 331.865
MVAE-Q 34.300 37.463 34.285 69.099 100.072
MVAE 22.181 25.640 20.309 26.917 73.923
MVAE19 – – – – 71.640

Variance of Joint Log Importance Weights: var(log( p(x1,x2,z)
q(z|x1)

))

JMVAE 41.003 40.126 56.640 91.850 334.887
MVAE-Q 34.615 38.190 34.908 64.556 101.238
MVAE 23.343 27.570 20.587 27.989 76.938
MVAE19 – – – – 72.030

Variance of Conditional Log Importance Weights: var(log( p(x1,z|x2)
q(z|x1)

))

CVAE 21.203 22.486 12.748 – 56.852
JMVAE 23.877 26.695 26.658 37.726 81.190
MVAE-Q 34.719 38.090 34.978 44.269 101.223
MVAE 19.478 25.899 18.443 16.822 73.885
MVAE19 – – – – 71.824

Table 3: Average variance of log importance weights for three marginal probabilities, estimated by
importance sampling from q(z|x1). 1000 importance samples were used to approximate the variance.
The lower the variance, the better quality the inference network.

Effect of number of ELBO terms In the MVAE training paradigm, there is a hyperparameter
k that controls the number of sampled ELBO terms to approximate the intractable objective. To
investigate its importance, we vary k from 0 to 50 and for each, train a MVAE19 on CelebA. We find
that increasing k has little effect on data log-likelihood but reduces the variance of the importance
distribution defined by the inference networks. In practice, we choose a small k as a tradeoff between
computation and a better importance distribution. See supplement for more details.
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(c) MultiMNIST

Figure 3: Effects of supervision level. We plot the level of supervision as the log number of paired
examples shown to each model. For MNIST and FashionMNIST, we predict the target class. For
MultiMNIST, we predict the correct string representing each digit. We compare against a suite
of baselines composed of models in relevant literature and commonly used classifiers. MVAE
consistently beats all baselines in the middle region where there is both enough data to fit a deep
model; in the fully-supervised regime, MVAE is competitive with feedforward deep networks. See
supplement for accuracies.

5.1 Weakly Supervised Learning

For each dataset, we simulate incomplete supervision by randomly reserving a fraction of the dataset
as multi-modal examples. The remaining data is split into two datasets: one with only the first
modality, and one with only the second. These are shuffled to destroy any pairing. We examine the
effect of supervision on the predictive task p(x2|x1), e.g. predict the correct digit label, x2, from
an image x1. For the MVAE, the total number of examples shown to the model is always fixed –
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only the proportion of complete bi-modal examples is varied. We compare the performance of the
MVAE against a suite of baseline models: (1) supervised neural network using the same architectures
(with the stochastic layer removed) as in the MVAE; (2) logistic regression on raw pixels; (3) an
autoencoder trained on the full set of images, followed by logistic regression on a subset of paired
examples; we do something similar for (4) VAEs and (5) RBMs, where the internal latent state is used
as input to the logistic regression; finally (6) we train the JMVAE (α = 0.01 as suggested in [23]) on
the subset of paired examples. Fig. 3 shows performance as we vary the level of supervision. For
MultiMNIST, x2 is a string (e.g. “6 8 1 2") representing the numbers in the image. We only include
JMVAE as a baseline since it is not straightforward to output raw strings in a supervised manner.

We find that the MVAE surpasses all the baselines on a middle region when there are enough paired
examples to sufficiently train the deep networks but not enough paired examples to learn a supervised
network. This is especially emphasized in FashionMNIST, where the MVAE equals a fully supervised
network even with two orders of magnitude less paired examples (see Fig. 3). Intuitively, these results
suggest that the MVAE can effectively learn the joint distribution by bootstrapping from a larger
set of uni-modal data. A second observation is that the MVAE almost always performs better than
the JMVAE. This discrepancy is likely due to directly optimizing the marginal distributions rather
than minimizing distance between several variational posteriors. We noticed empirically that in the
JMVAE, using the samples from q(z|x, y) did much better (in accuracy) than samples from q(z|x).

(a) Edge Detection and Facial Landscapes (b) Colorization

(c) Fill in the Blank (d) Removing Watermarks

Figure 4: Learning Computer Vision Transformations: (a) 4 ground truth images randomly chosen
from CelebA along with reconstructed images, edges, and facial landscape masks; (b) reconstructed
color images; (c) image completion via reconstruction; (d) reconstructed images with the watermark
removed. See supplement for a larger version with more samples.

6 Case study: Computer Vision Applications

We use the MVAE to learn image transformations (and their inverses) as conditional distributions. In
particular, we focus on colorization, edge detection, facial landmark segmentation, image completion,
and watermark removal. The original image is itself a modality, for a total of six.

To build the dataset, we apply ground-truth transformations to CelebA. For colorization, we transform
RGB colors to grayscale. For image completion, half of the image is replaced with black pixels. For
watermark removal, we overlay a generic watermark. To extract edges, we use the Canny detector
[4] from Scikit-Image [24]. To compute facial landscape masks, we use dlib [9] and OpenCV [3].

We fit a MVAE with 250 latent dimensions and k=1. We use Adam with a 10−4 learning rate, a
batch size of 50, λi = 1 for i = 1, ..., N , β annealing for 20 out of 100 epochs. Fig. 4 shows samples
showcasing different learned transformations. In Fig. 4a we encode the original image with the
learned encoder, then decode the transformed image with the learned generative model. We see
reasonable reconstruction, and good facial landscape and edge extraction. In Figs.4b, 4c, 4d we go in
the opposite direction, encoding a transformed image and then sampling from the generative model
to reconstruct the original. The results are again quite good: reconstructed half-images agree on
gaze direction and hair color, colorizations are reasonable, and all trace of the watermark is removed.
(Though the reconstructed images still suffer from the same blurriness that VAEs do [33].)
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7 Case study: Machine Translation

Num. Aligned Data (%) Test log p(x)
133 (0.1%) −558.88± 3.56
665 (0.5%) −494.76± 4.18
1330 (1%) −483.23± 5.81
6650 (5%) −478.75± 3.00
13300 (10%) −478.04± 4.95
133000 (100%) −478.12± 3.02

Table 4: Weakly supervised translation. Log
likelihoods on a test set, averaged over 3 runs.
Notably, we find good performance with a
small fraction of paired examples.

As a second case study we explore machine trans-
lation with weak supervision – that is, where only
a small subset of data consist of translated sentence
pairs. Many of the popular translation models [25]
are fully supervised with millions of parameters and
trained on datasets with tens of millions of paired
examples. Yet aligning text across languages is very
costly, requiring input from expert human transla-
tors. Even the unsupervised machine translation lit-
erature relies on large bilingual dictionaries, strong
pre-trained language models, or synthetic datasets
[12, 1, 19]. These factors make weak supervision
particularly intriguing.

We use the English-Vietnamese dataset (113K sen-
tence pairs) from IWSLT 2015 and treat English (en)
and Vietnamese (vi) as two modalities. We train the MVAE with 100 latent dimensions for 100
epochs (λen = λvi = 1). We use the RNN architectures from [2] with a maximum sequence length of
70 tokens. As in [2], word dropout and KL annealing are crucial to prevent latent collapse.

Type Sentence
xen ∼ pdata this was one of the highest points in my life.
xvi ∼ p(xvi|z(xen)) Đó là một gian tôi vời của cuộc đời tôi.
GOOGLE(xvi) It was a great time of my life.
xen ∼ pdata the project’s also made a big difference in the lives of the people .
xvi ∼ p(xvi|z(xen)) tôi án này được ra một Điều lớn lao cuộc sống của chúng người sống chữa hưởng .
GOOGLE(xvi) this project is a great thing for the lives of people who live and thrive .
xvi ∼ pdata trước tiên , tại sao chúng lại có ấn tượng xấu như vậy ?
xen ∼ p(xen|z(xvi)) first of all, you do not a good job ?
GOOGLE(xvi) First, why are they so bad?
xvi ∼ pdata Ông ngoại của tôi là một người thật đáng <unk> phục vào thời ấy .
xen ∼ p(xen|z(xvi)) grandfather is the best experience of me family .
GOOGLE(xvi) My grandfather was a worthy person at the time .

Table 5: Examples of (1) translating English to Vietnamese by sampling from p(xvi|z) where
z ∼ q(z|xen), and (2) the inverse. We use Google Translate (GOOGLE) for ground-truth.

With only 1% of aligned examples, the MVAE is able to describe test data almost as well as it could
with a fully supervised dataset (Table 4). With 5% aligned examples, the model reaches maximum
performance. Table 5 shows examples of translation forwards and backwards between English and
Vietnamese. See supplement for more examples. We find that many of the translations are not
extremely faithful but interestingly capture a close interpretation to the true meaning. While these
results are not competitive to state-of-the-art translation, they are remarkable given the very weak
supervision. Future work should investigate combining MVAE with modern translation architectures
(e.g. transformers, attention).

8 Conclusion

We introduced a multi-modal variational autoencoder with a new training paradigm that learns a joint
distribution and is robust to missing data. By optimizing the ELBO with multi-modal and uni-modal
examples, we fully utilize the product-of-experts structure to share inference network parameters
in a fashion that scales to an arbitrary number of modalities. We find that the MVAE matches the
state-of-the-art on four bi-modal datasets, and shows promise on two real world datasets.
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