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Part 1: Generative models

Learn to model p(x) where x = text, images, videos, multimodal data
- Given x, evaluate p(x) - realistic data should have high p(x) and vice versa
- Sample new x according to p(x) - sample realistic looking images
- Unsupervised representation learning - we should be able to learn what these images 

have in common, e.g., ears, tail, etc. (features)



Part 1: Generative models

Sometimes we also care about p(x|c) - conditional generation
- c is a category (e.g. faces, outdoor scenes) from which we want to generate images

We might also care about p(x2|x1,c) - style transfer
- c is a stylistic change e.g. negative to positive



Latent variable models

- Lots of variability in images x due to gender, eye color, hair color, pose, etc.
- However, unless images are annotated, these factors of variation are not explicitly 

available (latent).
- Idea: explicitly model these factors using latent variables z



Latent variable models

- Only shaded variables x are observed in the data
- Latent variables z are unobserved - correspond to high-level features

- We want z to represent useful features e.g. hair color, pose, etc.
- But very difficult to specify these conditionals by hand and they’re unobserved
- Let’s learn them instead



Latent variable models

- Put a prior on z 
-
- Hope that after training, z will correspond to meaningful latent factors of variation - 

useful features for unsupervised representation learning
- Given a new image x, features can be extracted via p(z|x)



Starting simple: Mixture of Gaussians
Mixture of Gaussians (Bayes network z -> x)

Generative process
1. Pick a mixture component by sampling z
2. Generate a data point by sampling from that Gaussian



Starting simple: Mixture of Gaussians



Starting simple: Mixture of Gaussians

Combining simple models into more expressive ones

can solve using expectation maximization



Starting simple: Mixture of Gaussians

Unsupervised clustering of digits

- Discovers clusters corresponding to 
factors of variation in the data
- Can generate new samples
- Cannot learn features of data i.e. p(z|x)



From GMMs to VAEs

- Put a prior on z 
-
- Hope that after training, z will correspond to meaningful latent factors of variation - 

useful features for unsupervised representation learning
- Even though p(x|z) is simple, marginal p(x) is much richer/complex/flexible
- Given a new image x, features can be extracted via p(z|x): natural for unsupervised 

learning tasks (clustering, representation learning, etc.)



Learning parameters of VAE

- Learning parameters of VAE: we have a joint distribution
- We have a dataset D where for each datapoint the x variables are observed (e.g. 

images, text) and the variables z are not observed (latent variables)
- We can try maximum likelihood estimation:



Learning parameters of VAE

intractable :-(
- if z binary with 30 dimensions, need 
sum 2^30 terms
- if z continuous, integral is hard

Need cheaper approximations to 
optimize for VAE parameters

- Learning parameters of VAE: we have a joint distribution
- We have a dataset D where for each datapoint the x variables are observed (e.g. 

images, text) and the variables z are not observed (latent variables)
- We can try maximum likelihood estimation:



Evidence Lower Bound

- Log-likelihood function with partially observed latent variables is hard to compute:

q(z) should be a simple distribution



Evidence Lower Bound

- Log-likelihood function with partially observed latent variables is hard to compute:

- Use Jensen’s inequality for concave functions, i.e. 



Evidence Lower Bound

- Log-likelihood function with partially observed latent variables is hard to compute:

- Use Jensen’s inequality for concave functions, i.e. 

Evidence Lower Bound (ELBO)



Evidence Lower Bound

- ELBO holds for any probability distribution q(z) over latent variables:

- Equality holds if q(z) = p(z|x):

- We want to choose q(z) to be as close to p(z|x) as possible, while being easy to 
compute



The KL divergence

- The KL divergence for variational inference is:

- Intuitively, there are three cases
a. If q is low then we don’t care (because of the expectation).
b. If q is high and p is high then we are happy.
c. If q is high and p is low then we pay a price.

- Note that p must be > 0 wherever q > 0



Evidence Lower Bound

- Starting from the KL divergence:

- Re-derive ELBO from KL divergence:

- Equality holds if q = p(z|x) because KL(q||p) = 0:



Evidence Lower Bound

- Starting from the KL divergence:

- Re-derive ELBO from KL divergence:

- Equality holds if q = p(z|x) because KL(q||p) = 0:

- In general, 
- The closer the chosen q is to p(z|x), the closer the ELBO is to the true likelihood.



Variational Inference

- Variational inference: optimize variational parameters so that             is as close as 
possible to         while being simple to compute          

- E.g. in figure, posterior (in blue) is better approximated by orange Gaussian than green



Variational Inference

- In practice how can we learn encoder parameters
and variational (decoder) parameters jointly?



Learning the parameters

Slides from Ermon and Grover



Learning the parameters

Slides from Ermon and Grover

reconstruction prior



Learning the parameters

Slides from Ermon and Grover

reconstruction prior



Learning the parameters

- We need to compute the gradients 

easy



Learning the parameters

- We need to compute the gradients 

easy



Learning the parameters

- We need to compute the gradients 

easy



Learning the parameters
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Learning the parameters

- We need to compute the gradients 

- Expectations also depend on  

easy tricky



Reparameterization trick

Slides from Ermon and Grover
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Reparameterization trick

Slides from Ermon and Grover



Reparameterization trick

reparameterize



Reparameterization trick

reparameterize



Reparameterization trick

reparameterize



Learning the parameters

Differentiable using reparameterization trick

encoder

decoder

reparameterize

reconstruction prior



VAE for disentanglement

Disentangled representation learning
- Very useful for style transfer: disentangling style from content

[Locatello et al., ICML 2019]

[Shen et al., NeurIPS 2017]

[Gatys et al., CVPR 2016]



VAE for disentanglement

Disentangled representation learning
- Very useful for style transfer: disentangling style from content

- beta-VAE: beta = 1 recovers VAE, beta > 1 imposes stronger
constraint on the latent variables to have independent 
dimensions

[Mathieu et al., ICML 2019]



VAE for disentanglement

Disentangled representation learning
- Very useful for style transfer: disentangling style from content

- beta-VAE: beta = 1 recovers VAE, beta > 1 imposes stronger
constraint on the latent variables to have independent 
dimensions

- Difficult problem!
- Positive results [Hu et al., 2016, Kulkarni et al., 2015]
- Negative results [Mathieu et al., 2019, Locatello et al., 2019] 
- Better benchmarks & metrics to measure disentanglement [Higgins et al., 2017, Kim & Mnih 2018]

[Mathieu et al., ICML 2019]



VAE for multimodal data

[Tsai*, Liang* et al., ICLR 2019]

Joint multimodal factor (sentiment/emotion)

Language specific factor

Visual specific factor

Audio specific factor

Disentangled factors



VAE for multimodal data

[Tsai*, Liang* et al., ICLR 2019]

Joint multimodal factor (sentiment/emotion)

Language specific factor

Visual specific factor

Audio specific factor

Disentangled factors



VAE for multimodal data

[Tsai*, Liang* et al., ICLR 2019]

reconstruction

prediction

prior



VAE for multimodal data

[Tsai*, Liang* et al., ICLR 2019]

Discriminative performance

Code: https://github.com/pliang279/factorized



VAE for multimodal data

[Tsai*, Liang* et al., ICLR 2019]

Modality 1: SVHN Modality 2: MNIST

Disentangling factors of variation: controllable generation

Code: https://github.com/pliang279/factorized



VAE for multimodal data

[Tsai*, Liang* et al., ICLR 2019]

Modality 1: SVHN Modality 2: MNIST

Disentangling factors of variation: controllable generation

Code: https://github.com/pliang279/factorized



VAE for multimodal data

[Tsai*, Liang* et al., ICLR 2019]

Interpreting modality-specific factors

Code: https://github.com/pliang279/factorized



VAE for multimodal data

[Lee et al., ICRA 2019]

VAEs beyond reconstruction
- It can be hard to reconstruct 

high-dimensional input 
modalities

- Combine VAEs with 
self-supervised learning: 
reconstruct important signals 
from the input

Self-supervised signals



VAE for multimodal data

[Lee et al., ICRA 2019]

High success rate from multimodal signals



VAE for multimodal data

[Lee et al., ICRA 2019]

Robustness to:
- external forces
- camera occlusion
- moving targets



● Relatively easier to train
● Explicit inference network q(z|x)
● More blurry images (due to 

reconstruction)

VAEs

Summary: generative models



Part 3: Generative Adversarial Nets

Beyond likelihood-based learning:
- Difficulty in evaluating and optimizing p(x) in high-dimensions
- High p(x) might not correspond to realistic samples



Part 3: Generative Adversarial Nets

Towards likelihood-free learning

Given a finite set of samples from two distributions, how can we tell if these samples are 
from the same distribution? (i.e. P = Q?)



Part 3: Generative Adversarial Nets

Key observation: Test statistic is likelihood-free since it does not involve the densities P 
or Q, only samples



Part 3: Generative Adversarial Nets

Towards likelihood-free learning

- Assume we have access to
- In addition, we have our model’s distribution
- Assume that our model’s distribution permits efficient sampling of 
- Alternate notion of distance between distributions: Train the generative model to 

minimize a two-sample test objective between S1 and S2



Part 3: Generative Adversarial Nets

Towards likelihood-free learning

- Problem: finding a two-sample test objective in high-dimensions is hard
- In the generative model setup, we know that S1 and S2 come from different 

distributions 
- Key idea: learn a statistic that maximizes a suitable notion of distance between the 

two sets of samples S1 and S2



Part 3: Generative Adversarial Nets

- A 2 player minimax game between a generator and a discriminator

- Generator: a directed latent variable model from z to x
- Minimizes the two-sample test objective: in support of null hypothesis 



- A 2 player minimax game between a generator and a discriminator

- Discriminator: any function (e.g. neural network) that tries to distinguish ‘real’ 
samples from the datasets from ‘fake’ samples generated by the model

- Maximizes the two-sample test objective: in support of alternative hypothesis 

Part 3: Generative Adversarial Nets



Training the discriminator

- Training objective for discriminator

- For a fixed generator G, the discriminator performs binary classification between true 
samples (assign label 1) vs fake samples (assign label 0)

- Optimal discriminator:



Training the generator

- Training objective for generator

Slides from Ermon and Grover



More about divergences

- Also known as the symmetric KL divergence

Slides from Ermon and Grover



GAN training

Slides from Ermon and Grover



GAN extensions

Progress in face generation

Figure from Goodfellow



GAN extensions

- If our data are on a low-dimensional manifold of a 
high dimensional space, the model’s manifold and 
the true data manifold can have a negligible 
intersection in practice

- KL divergence is undefined or infinite so the loss 
function and gradients may not be continuous and 
well behaved

[Arjovsky et al., ICML 2017]



GAN extensions

- The Wasserstein Distance is well defined
- Earth Mover’s Distance: minimum transportation 

cost for making one pile of dirt in the shape of one 
probability distribution to the shape of the other 
distribution

[Arjovsky et al., ICML 2017]



GAN extensions
Wasserstein GAN:
Dual form of Earth Mover’s distance

Optimal discriminator and critic when learning to differentiate 
two Gaussians. The discriminator of a GAN saturates and results 
in vanishing gradients. WGAN critic provides clean gradients on 

all parts of the space. (Arjovsky et al. 2017)

[Arjovsky et al., ICML 2017]



GAN extensions
Wasserstein GAN:
Dual form of Earth Mover’s distance

Optimal discriminator and critic when learning to differentiate 
two Gaussians. The discriminator of a GAN saturates and results 
in vanishing gradients. WGAN critic provides clean gradients on 

all parts of the space. (Arjovsky et al. 2017)- Bounded derivative -> function cannot change too quickly
- In practice, use gradient clipping to enforce Lipschitz continuity

[Arjovsky et al., ICML 2017]



GAN extensions

Progressive GAN

● Starts with low resolution and gradually add layers to generator and discriminator

[Karras et al., ICLR 2018]



GAN extensions
Scaling up GANs

1. Self-Attention and Hinge Loss (focus)

2. Class-conditioned generation (accuracy)
3. Spectral normalization (stability)

Examples of Large High-Quality 512×512 Class-Conditional Images Generated by BigGAN.
Taken from: Large Scale GAN Training for High Fidelity Natural Image Synthesis.

[Brock et al., ICLR 2019]



GAN extensions
Lots of current work:

- Better loss functions (see Lucic et al., 2018 for a large-scale comparison)
- Optimization tricks (Tim Salimans et al. 2016, Soumith Chintala and more)
- Better evaluation metrics

- Inception Score (IS) (Salimans et al 2016)
- Frechet Inception Distance (FID) (Heusel et al. 2017)
- Precision, Recall and F1 (Lucic et al. 2018)

- Applications:
- Text style transfer (Shen et al., NeurIPS 2017; Zhao et al., ICML 2018; Li et al., AAAI 2020)
- Cross-modal generation



GAN applications
Image generation from text

- MirrorGAN: text to image via 
redescription

- Bears resemblance to conditional 
GANs for with text as context variable

- CycleGAN: ensuring cycle consistency 
of generated outputs

[Qiao et al., CVPR 2019]



GAN applications
Image generation from text

- StackGAN: generation over 
multiple stages

- Stage 2 refines stage 1

[Zhang et al., ICCV 2017]



GAN applications

[Zhang et al., ICCV 2017]

Image generation from text
- StackGAN: generation over 

multiple stages
- Stage 2 refines stage 1



GAN applications

[Zhu et al., CVPR 2020]

Semantically Multi-modal Image Synthesis
- Generating based on real image and new semantic mask
- Disentangled latent code controls semantics (e.g. clothes, hair, face, pants)



GAN applications

[Zhu et al., CVPR 2020]

- Semantically Multi-modal Image Synthesis



GAN applications

GANs for text generation

1. Text data is discrete
○ Discriminator gradient does not exist for samples from categorical distribution
○ Gradient sparse due to large dictionary size

2. Text is sensitive to noise (small disturbances easily alters the meaning of text)
3. Sparse discriminator feedback (feedback only makes sense on full sentences)

Gumbel-softmax to approximate samples from the 
categorical generator distribution (Jang et al. 2016) Dense feedback with policy gradients and reward 

signals (d’Autume et al. 2019)



GAN applications

GANs for text generation

1. Text data is discrete
○ Discriminator gradient does not exist for samples from categorical distribution
○ Gradient sparse due to large dictionary size

2. Text is sensitive to noise (small disturbances easily alters the meaning of text)
3. Sparse discriminator feedback (feedback only makes sense on full sentences)

Gumbel-softmax to approximate samples from the 
categorical generator distribution (Jang et al. 2016) Dense feedback with policy gradients and reward 

signals (d’Autume et al. 2019)

More next week!



● Relatively easier to train
● Explicit inference network q(z|x)
● More blurry images (due to 

reconstruction)

● Requires many optimization tricks (prone to 
mode collapse, adversarial objective)

● Implicit generative model (unless using 
bidirectional GAN)

● Sharper images (due to discriminator)

VAEs GANs

Summary: generative models

- Adversarial autoencoders (Makhzani et al., 2015)
- Autoencoder GANs (Rosca et al., 2017)



Summary: multimodal applications

[Tsai et al., ICLR 2019] [Qiao et al., CVPR 2019]

[Locatello et al., ICML 2019] [Lee et al., ICRA 2019]



Roadmap

Generative models
- VAE, GANs for 
continuous data

10/22

Reinforcement learning 1
- agent, env, rewards
- value based learning

10/27

Reinforcement learning 2
- policy gradients
- revisit generative models for 
discrete outputs

10/29


