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Admin

Matching for midterm presentation

→ Give feedback to relevant teams

Due by Wednesday 10/28 8pm ET

https://forms.gle/fEQgmk4g6Yfop6Ct5

https://forms.gle/fEQgmk4g6Yfop6Ct5


Admin

Instructions for the midterm presentations are on piazza resources:

- https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kg742kik5kv6tg
- Deadline for pre-recorded presentation: Friday, November 13th, 2020 at 8pm ET
- 7 minutes, mostly about error analysis and updated ideas, don't try to present 

everything… 

Instructions for midterm report are also online:

- https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kgraer741fw3n4
- Deadline: Sunday, November 15th, 2020
- 8 pages for teams of 3 and 9 pages for the other teams
- Multimodal baselines, error analysis, proposed ideas

https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kg742kik5kv6tg
https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kgraer741fw3n4


Used Materials

Acknowledgement: Some of the material and slides for this lecture were 
borrowed from the Deep RL Bootcamp at UC Berkeley organized by Pieter 
Abbeel, Yan Duan, Xi Chen, and Andrej Karpathy, as well as Katerina Fragkiadaki 
and Ruslan Salakhutdinov’s 10-703 course at CMU, who in turn borrowed much 
from Rich Sutton’s class and David Silver’s class on Reinforcement Learning.
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● Introduction to RL
● Markov Decision Processes (MDPs)
● Solving known MDPs using value and policy iteration
● Solving unknown MDPs using function approximation and Q-learning



Reinforcement Learning

ALVINN, 1989 AlphaGo, 2016 DQN, 2015



Reinforcement Learning

Trajectory



Markov Decision Process (MDPs)

Trajectory



A state should summarize all past information and have the Markov 
property.

We should be able to throw away the history once state is known

- If some information is only partially observable: Partially 
Observable MDP (POMDP)

Markov assumption + Fully observable



We aim to maximize total discounted reward:

Return

Discount 
factor



Policy

Definition: A policy is a distribution over actions given states

- A policy fully defines the behavior of an agent
- The policy is stationary (time-independent)
- During learning, the agent changes its policy as a result 

of experience

Special case: deterministic policies



Learn the optimal policy to maximize return

Goal:

Return:
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Reinforcement Learning vs Supervised Learning

● Sequential decision making
● Maximize cumulative reward
● Sparse rewards
● Environment maybe unknown

● One-step decision making
● Maximize immediate reward
● Dense supervision
● Environment always known

Reinforcement Learning Supervised Learning
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Intersection between RL and supervised learning
Imitation learning!

Perform supervised learning by predicting expert action

D = {(s0, a*0), (s1, a*1), (s2, a*2), …}

But: distribution mismatch between training and testing
Hard to recover from sub-optimal states

Sometimes not safe/possible to collect expert trajectories

Obtain expert trajectories (e.g. human driver/video demonstrations):



Learn the optimal policy to maximize return

Goal:

Return:



- Definition: the state-value function              of an MDP is the expected return starting 
from state s, and following policy 

- Definition: the action-value function                  is the expected return starting from 
state s, taking action a, and then following policy 

State and action value functions

Captures long term reward

Captures long term reward



- Definition: the optimal state-value function                is the maximum value function 
over all policies

- Definition: the optimal action-value function                     is the maximum action-value 
function over all policies

Optimal state and action value functions



Solving MDPs



Solving MDPs



Value functions

- Value functions measure the goodness of a particular state or state/action pair: how 
good is it for an agent to be in a particular state or execute a particular action at a 
particular state, for a given policy

- Optimal value functions measure the best possible states or state/action pairs under 
all possible policies



Relationships between state and action values

State value functions Action value functions
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Relationships between state and action values

State value functions Action value functions



Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a) 



Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a) 

Optimal policy can also be found by maximizing over V*(s’) with one-step look ahead



Bellman expectation

Recursively:

So, how do we find Q*(s,a) and V*(s)?
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Bellman expectation for state value functions



Bellman expectation for action value functions
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Bellman expectation for action value functions



Solving the Bellman expectation equations



Solving the Bellman expectation equations

Solve the linear system

variables:                         for all s

constants:       p(s’|s,a), r(s,a,s’)        



Solving the Bellman expectation equations

Solve by iterative methods

Solve the linear system

variables:                         for all s

constants:       p(s’|s,a), r(s,a,s’)        



Policy Evaluation

1. Policy evaluation
Iterate until convergence:
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Policy Iteration

2. Policy Improvement
Find the best action according to one-step look ahead

1. Policy evaluation
Iterate until convergence:

Repeat until policy converges. Guaranteed to converge to optimal policy.



Bellman optimality for state value functions

The value of a state under an optimal policy must equal the expected return for 
the best action from that state

For the Bellman 
expectation equations 
we summed over all 
leaves, here we choose 
the best branch
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Bellman optimality for action value functions

For the Bellman 
expectation equations 
we summed over all 
leaves, here we choose 
the best branch



Solving the Bellman optimality equations



Solving the Bellman optimality equations

Solve by iterative methods



Value Iteration

Slides from Fragkiadaki



Value Iteration

Find the best action according to one-step look ahead
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Value Iteration

Find the best action according to one-step look ahead

Repeat until policy converges. Guaranteed to converge to optimal policy.

Slides from Fragkiadaki



Q-Value Iteration

Slides from Fragkiadaki



Repeat until policy converges. Guaranteed to converge to optimal policy.

Q-value iteration

Value iteration

Summary: Exact methods

Fully known 
MDP

states
transitions

rewards

Bellman 
optimality 
equations



Repeat until policy converges. Guaranteed to converge to optimal policy.

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Summary: Exact methods

Fully known 
MDP
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Bellman 
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equations



Fully known 
MDP

states
transitions

rewards

Bellman 
optimality 
equations

Bellman 
expectation 
equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete 

state and action space
Update equations require fully observable MDP and known transitions

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Summary: Exact methods



Solving unknown MDPs using function 
approximation



Recap: Q-value iteration

This is problematic when do not know the transitions
Slides from Fragkiadaki



Tabular Q-learning

Slides from Fragkiadaki



Tabular Q-learning

simulation and exploration

Slides from Fragkiadaki



Tabular Q-learning update

learning rate

Key idea: implicitly estimate the transitions via simulation



Tabular Q-learning
Bellman optimality

Slides from Fragkiadaki
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Bellman optimality

Slides from Fragkiadaki



Tabular Q-learning

Slides from Fragkiadaki



Epsilon-greedy

Poor estimates of Q(s,a) at the start:

Bad initial estimates in the first few cases can drive policy into sub-optimal region, 
and never explore further.

Gradually decrease epsilon as policy is learned.



Tabular Q-learning

Slides from Fragkiadaki



Convergence

Slides from Abbeel



Tabular Q-learning
Tabular: keep a |S| x |A| table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?



Summary: Tabular Q-learning

targetold estimate 

Tabular Q-learning

MDP
with 

unknown
transitions

Replace true 
expectation over 
transitions with 

estimates 

Bellman 
optimality 
equations

simulation and exploration, epsilon greedy is important!
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Tabular: keep a |S| x |A| table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?

Tabular Q-learning

MDP
with 

unknown
transitions

Replace true 
expectation over 
transitions with 

estimates 

Bellman 
optimality 
equations

simulation and exploration, epsilon greedy is important!



Deep Q-learning

DQN, 2015

Q-learning with function approximation to 
extract informative features from 
high-dimensional input states.



Deep Q-learning

Represent value function by Q network with weights w

+ high-dimensional, continuous states
+ generalization to new states

Slides from Fragkiadaki



Deep Q-learning

- Optimal Q-values should obey Bellman equation

- Treat right-hand as as a target

- Minimize MSE loss by stochastic gradient descent



Deep Q-learning

- Minimize MSE loss by stochastic gradient descent

- Converges to Q* using table lookup representation

- But diverges using neural networks due to:
- Correlations between samples
- Non-stationary targets



- To remove correlations, build data-set from agent’s own experience

- Sample random mini-batch of transitions (s,a,r,s’) from D

Experience replay

exploration, epsilon greedy is important!



Fixed Q-targets
- Sample random mini-batch of transitions (s,a,r,s’) from D
- Compute Q-learning targets w.r.t. old fixed parameters w-

- Optimize MSE between Q-network and Q-learning targets



Fixed Q-targets
- Sample random mini-batch of transitions (s,a,r,s’) from D
- Compute Q-learning targets w.r.t. old fixed parameters w-

- Optimize MSE between Q-network and Q-learning targets

- Use stochastic gradient descent
- Update w- with updated w every ~1000 iterations



Deep Q-learning for Atari



Deep Q-learning for Atari

Slides from Fragkiadaki



Deep Q-learning for Atari

Encourage Markov property

Slides from Fragkiadaki



Superhuman results
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Superhuman results

Needs reaction speed
Short term reward
Less exploration required
Deep RL >>> humans

Slides from Fragkiadaki



Superhuman results

Needs reaction speed
Short term reward
Less exploration required
Deep RL >>> humans

Super long term reward
More exploration required
Requires knowledge of 
complex dynamics e.g. key, 
ladder.
Challenge for deep RL

Slides from Fragkiadaki



Superhuman results on Montezuma’s Revenge

Encourages agent to 
explore its environment by 
maximizing curiosity.
I.e. how well can I predict 
my environment?
1. less training data
2. stochastic
3. unknown dynamics
So I should explore more.

Burda et. al., ICLR 2019 

http://www.youtube.com/watch?v=40VZeFppDEM


Fully known 
MDP

states
transitions

rewards

Bellman 
optimality 
equations

Bellman 
expectation 
equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete 

state and action space
Update equations require fully observable MDP and known transitions
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Summary: Tabular Q-learning
MDP
with 

unknown
transitions

Replace true 
expectation over 
transitions with 

estimates 

Bellman 
optimality 
equations

targetold estimate 

Tabular: keep a |S| x |A| table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?

Tabular Q-learning

simulation and exploration, epsilon greedy is important!



Summary: Deep Q-learning

targetold estimate 

Works for high-dimensional state and action spaces
Generalizes to unseen states

Stochastic gradient descent + Experience replay + Fixed Q-targets  



Applications: RL and Language



RL and Language

Luketina et. al., IJCAI 2019



Language-conditional RL

● Instruction following
● Rewards from instructions
● Language in the observation and action space



Language-conditional RL: Instruction following

● Navigation via instruction following

Chaplot et. al., AAAI 2018
Misra et. al., EMNLP 2017



Language-conditional RL: Instruction following

● Navigation via instruction following

Fusion
Alignment
Ground language
Recognize objects
Navigate to objects
Generalize to unseen objects

Chaplot et. al., AAAI 2018
Misra et. al., EMNLP 2017



Language-conditional RL: Instruction following

● Interaction with the environment

Chaplot et. al., AAAI 2018



Language-conditional RL: Instruction following

● Gated attention via element-wise product

Chaplot et. al., AAAI 2018

Fusion
Alignment
Ground language
Recognize objects



Language-conditional RL: Instruction following

● Policy learning

Chaplot et. al., AAAI 2018



Language-conditional RL: Instruction following

Chaplot et. al., AAAI 2018

http://www.youtube.com/watch?v=JziCKsLrudE


Language-conditional RL: Instruction following

Grounding is important for 
generalization

blue armor, red pillar -> blue pillar

Chaplot et. al., AAAI 2018



Language-conditional RL: Rewards from instructions

Montezuma’s revenge

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards



Language-conditional RL: Rewards from instructions

Montezuma’s revenge

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Encourages agent to 
explore its environment by 
maximizing curiosity.
How well can I predict my 
environment?
1. Less training data
2. Stochastic
3. Unknown dynamics
So I should explore more.

Pathak et. al., ICML 2017
Burda et. al., ICLR 2019 



Language-conditional RL: Rewards from instructions

Montezuma’s revenge

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Natural language for reward shaping

Goyal et. al., IJCAI 2019 

“Jump over the skull while going to the left”

from Amazon Mturk :-(
asked annotators to play the 
game and describe entities

Intermediate rewards to speed up learning
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Language-conditional RL: Rewards from instructions

Montezuma’s revenge

Natural language for reward shaping

Goyal et. al., IJCAI 2019 

Encourages agent to take actions related to the instructions



Language-conditional RL: Language in S and A

● Embodied QA: Navigation + QA

Das et. al., CVPR 2018Most methods similar to instruction following

http://www.youtube.com/watch?v=gVj-TeIJfrk


Language-assisted RL

● Language for communicating domain knowledge
● Language for structuring policies



Language-assisted RL: Domain knowledge

● Properties of entities in the environment are annotated by language

Narasimhan et. al., JAIR 2018
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Language-assisted RL: Domain knowledge

● Properties of entities in the environment are annotated by language

Narasimhan et. al., JAIR 2018

Grounded language learning
Helps to ground the meaning of text to the dynamics, transitions, and rewards

Language helps in multi-task learning and transfer learning

Fusion problem
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Branavan et. al., JAIR 2012

● Learning to read instruction manuals
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Language-assisted RL: Domain knowledge

● Learning to read instruction manuals

Branavan et. al., JAIR 2012

A: action-description
S: state-description

Relevant sentences



Language-assisted RL: Domain knowledge

● Learning to read instruction manuals

Branavan et. al., JAIR 2012

Grounded language learning
Ground the meaning of text to the dynamics, transitions, and rewards

Language helps in learning



Language-assisted RL: Domain knowledge

● Learning to read instruction manuals

Branavan et. al., JAIR 2012

Language is most important at the start when you don’t have a good policy
Afterwards, the model relies on game features



Language for structuring policies

● Composing modules for Embodied QA

Das et. al., CoRL 2018



Language for structuring policies

● Composing modules for Embodied QA

Das et. al., CoRL 2018


