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Admin

Instructions for the midterm presentations are on piazza resources:

- https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kg742kik5kv6tg
- Deadline for pre-recorded presentation: Friday, November 13th, 2020 at 8pm ET
- 7 minutes, mostly about error analysis and updated ideas, don't try to present 

everything...

Instructions for midterm report are also online:

- https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kgraer741fw3n4
- Deadline: Sunday, November 15th, 2020
- 8 pages for teams of 3 and 9 pages for the other teams
- Multimodal baselines, error analysis, proposed ideas

Start working on midterm assignments now!

https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kg742kik5kv6tg
https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kgraer741fw3n4


Admin

Reading wildcard
- Each student gets one (1) wild card to be 

used as a way to extend by up to 24 hours 
their deadline for the summary deadline 
(which is usually Fridays at 8pm)

- See details on piazza



Admin

Piazza live Q&A



Used Materials

Acknowledgement: Some of the material and slides for this lecture were 
borrowed from Pieter Abbeel, Yan Duan, Xi Chen, and Andrej Karpathy’s Deep RL 
Bootcamp at UC Berkeley, as well as Katerina Fragkiadaki and Ruslan 
Salakhutdinov’s 10-703 course at CMU, who in turn borrowed much from Rich 
Sutton’s class and David Silver’s class on Reinforcement Learning.



Recap: Markov Decision Process (MDPs)

Trajectory

Slides from Fragkiadaki



We aim to maximize total discounted reward:

Return

Discount 
factor



Policy

Definition: A policy is a distribution over actions given states

- A policy fully defines the behavior of an agent
- The policy is stationary (time-independent)
- During learning, the agent changes its policy as a result 

of experience

Special case: deterministic policies



Goal:

Return:

Recap: MDPs, Returns, Policies



Reinforcement Learning vs Supervised Learning

● Sequential decision making
● Maximize cumulative reward
● Sparse rewards
● Environment maybe unknown

● One-step decision making
● Maximize immediate reward
● Dense supervision
● Environment always known

Reinforcement Learning Supervised Learning



Fully known 
MDP

states
transitions

rewards

Bellman 
optimality 
equations

Bellman 
expectation 
equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Recap: Exact methods



Fully known 
MDP

states
transitions

rewards

Bellman 
optimality 
equations

Bellman 
expectation 
equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Recap: Exact methods

Iterate over and storage for all states and actions
Requires small, discrete state and action space

Update equations require fully observable MDP and known transitions



Recap: Tabular Q-learning
MDP
with 

unknown
transitions

Replace true 
expectation over 
transitions with 

estimates 

Bellman 
optimality 
equations

targetold estimate 

Tabular Q-learning

simulation and exploration, epsilon greedy is important!



Recap: Tabular Q-learning
MDP
with 

unknown
transitions

Bellman 
optimality 
equations

targetold estimate 

simulation and exploration, epsilon greedy is important!

Tabular: keep a |S| x |A| table of Q(s,a)
Still requires small and discrete state and action space

How can we generalize to unseen states?

Tabular Q-learning

Replace true 
expectation over 
transitions with 

estimates 



Recap: Deep Q-learning

targetold estimate 

Correlated samples + non-stationary targets



Recap: Deep Q-learning
- Sample random mini-batch of transitions (s,a,r,s’) from D
- Compute Q-learning targets w.r.t. old fixed parameters w-

- Optimize MSE between Q-network and Q-learning targets

- Use stochastic gradient descent
- Update w- with updated w every ~1000 iterations



Recap: Deep Q-learning

targetold estimate 

Works for high-dimensional state and action spaces
Generalizes to unseen states

Stochastic gradient descent + Exploration + Experience replay + Fixed Q-targets  



Recap: Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a) 



Recap: Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a) 

Optimal policy can also be found by maximizing over V*(s’) with one-step look ahead



Contents

● Policy gradient methods
● Actor-critic
● Applications: Language and RL
● Applications: RL for language (e.g. text generation)



Value-based and Policy-based RL

State value functions Action value functions

Slides from Fragkiadaki



Value-based and Policy-based RL

Slides from Fragkiadaki



Directly learning the policy

Q(s,a) and V(s) very high-dimensional
But policy could be just ‘open/close hand’
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Value-based and Policy-based RL

Policy-based Value-based

Slides from Fragkiadaki



Pong from pixels

Slides from Karpathy
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Pong from pixels

Network sees +1 if it scored a point, and -1 if it was scored against.
How do we learn these parameters?

Slides from Karpathy
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Pong from pixels

epsilon greedy!
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Pong from pixels

epsilon greedy!

Does not require transition probabilities
Does not estimate Q(), V()

Predicts policy directly

Slides from Karpathy



Pong from pixels

Slides from Karpathy

http://www.youtube.com/watch?v=YOW8m2YGtRg


Policy gradients

Why does this work?

Slides from Karpathy



Formally, let’s define a class of parameterized policies

For each policy, define its value:

Policy gradients



Writing in terms of trajectories

Probability of a trajectory Reward of a trajectory

Policy gradients



Writing in terms of trajectories

Probability of a trajectory Reward of a trajectory

Policy gradients



Formally, let’s define a class of parameterized policies

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy gradients

Gradient ascent on policy parameters



REINFORCE algorithm



REINFORCE algorithm



REINFORCE algorithm



REINFORCE algorithm

Tractable :-)



Can we compute these without knowing the transition probabilities?

We have:

REINFORCE algorithm
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Can we compute these without knowing the transition probabilities?

We have:

Thus:

REINFORCE algorithm

And when differentiating:

Therefore when sampling a trajectory, we can estimate gradients:

Doesn’t depend on 
transition probabilities



Intuition

Gradient estimator:

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen
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Gradient estimator:
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Intuition

Gradient estimator:

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really 
hard - can we help this estimator?



Variance reduction with a baseline
Problem: The raw reward of a trajectory isn’t necessarily meaningful. E.g. if all 
rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you 
expect to get.



Variance reduction with a baseline
Problem: The raw reward of a trajectory isn’t necessarily meaningful. E.g. if all 
rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you 
expect to get.

Idea: Introduce a baseline function dependent on the state, which gives us an 
estimator:

e.g. exponential moving average of the rewards. Provably reduces variance while remaining unbiased. 



Actor-critic methods

A better baseline: want to push the probability of an action from a state, if this 
action was better than the expected value of what we should get from that state

Recall: Q and V - action value and state value functions!



Actor-critic methods

A better baseline: want to push the probability of an action from a state, if this 
action was better than the expected value of what we should get from that state

Recall: Q and V - action value and state value functions!

We are happy with an action a in a state s if Q(s,a) - V(s) is large.
Otherwise we are unhappy with an action if it’s small.

Using this, we get the estimator:



Actor-critic methods

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training 
both an actor (the policy) and a critic (the Q function) 
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Actor-critic methods

Actor: decides what actions to take

Critic: evaluates how good the action is 

Minh et. al., ICML 2016

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training 
both an actor (the policy) and a critic (the Q function) 

Exploration + experience replay
Decorrelate samples

Fixed targets



Summary of RL methods

Value iteration
Policy iteration

(Deep) Q-learning

Policy gradients

Actor (policy)
Critic (Q-values)

Slides from Fragkiadaki



Applications: Stochastic optimization



Stochastic Optimization
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Stochastic Optimization

VAEs

x

z

x

Evidence lower bound

In RL (at least for discrete actions):
- T is a sequence of discrete actions
- p(T;     ) is not reparameterizable
- r(T) is a black box function
i.e. the environment

Solve by reparameterization!

RL

Reward

Reparameterization???

We require that:
- z is continuous
- q(z) is reparameterizable
- f(z) is differentiable wrt

s

a

r
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Stochastic Optimization

VAEs

x

z

x

Evidence lower bound

In RL (at least for discrete actions):
- T is a sequence of discrete actions
- p(T;     ) is not reparameterizable
- r(T) is a black box function
i.e. the environment

REINFORCE is a general-purpose solution!

Solve by reparameterization!

RL

Reward

Reparameterization???

We require that:
- z is continuous
- q(z) is reparameterizable
- f(z) is differentiable wrt

s

a

r

???
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Revisiting REINFORCE



We want to take gradients wrt      of the term: 

We can now compute a Monte Carlo estimate:

Revisiting REINFORCE



We want to take gradients wrt      of the term: 

We can now compute a Monte Carlo estimate:

What we derived: sample trajectories and compute:

Revisiting REINFORCE



We can now compute a Monte Carlo estimate:

What we derived: sample trajectories and compute:

We just need the distribution q() to allow for easy sampling

Revisiting REINFORCE

- z can be discrete or continuous!
- q(z) can be a discrete and continuous distribution! (but must be differentiable wrt     )
- f(z) can be a black box!



Applications: Text generation

[Yu et. al., AAAI 2017]

GANs for text generation
1. Text data is discrete

○ Discriminator gradient does not exist for samples from categorical distribution
○ Gradient sparse due to large dictionary size
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Applications: Text generation

[Yu et. al., AAAI 2017]

More efficient search strategy for most likely sentence

LM

disc reward

GANs for text generation
1. Text data is discrete

○ Discriminator gradient does not exist for samples from categorical distribution
○ Gradient sparse due to large dictionary size

complete 
sentences

Training generator:
After sampling all words using Monte Carlo 
search, compute reward for generator 
based on discriminator feedback
- if similar to real text, high reward
- if different from real text, low reward



Applications: Text generation

[Yu et. al., AAAI 2017]

GANs for text generation
1. Text data is discrete

○ Discriminator gradient does not exist for samples from categorical distribution
○ Gradient sparse due to large dictionary size Training generator:

After sampling all words using Monte Carlo 
search, compute reward for generator 
based on discriminator feedback
- if similar to real text, high reward
- if different from real text, low reward

More efficient search strategy for most likely sentence

complete 
sentences LM

disc reward

Training discriminator is easy - all params are differentiable



Applications: Text generation

[d’Autume et. al., NeurIPS 2019]

GANs for text generation

1. Text is sensitive to noise (small disturbances easily alters the meaning of text)
2. Sparse discriminator feedback (feedback only makes sense on full sentences)

+ Instead of discriminator reward after whole sentence, use 
a recurrent discriminator which compares generated vs 
real prefixes to give dense rewards at all time steps
+ large variance from REINFORCE: use large batch sizes 
and subtract baseline (moving average of rewards)
+ other tricks, see paper

prefixes LM

disc reward



Applications: Text generation

[d’Autume et. al., NeurIPS 2019]

GANs for text generation

1. Text is sensitive to noise (small disturbances easily alters the meaning of text)
2. Sparse discriminator feedback (feedback only makes sense on full sentences)

Other approaches as well without using policy gradients
- discriminator directly comparing in logit space
- use Gumbel softmax (Jang et al. 2016)
- see more in 
https://www.cl.uni-heidelberg.de/statnlpgroup/blog/rl4nmt/
and 
https://deepgenerativemodels.github.io/assets/slides/cs236_
lecture15.pdf

https://www.cl.uni-heidelberg.de/statnlpgroup/blog/rl4nmt/
https://deepgenerativemodels.github.io/assets/slides/cs236_lecture15.pdf
https://deepgenerativemodels.github.io/assets/slides/cs236_lecture15.pdf


Applications: Dialog generation

[Li et. al., EMNLP 2017]
Slides from Wang, ACL 2018 tutorial

GANs for dialog generation and evaluation

Sample:
Input message
Response 1
Response 2
…
Response K

Define rewards:
1. Ease of answering
2. Information flow
3. Meaningfulness
4. Discriminator wrt 
human dialog



Applications: Optimizing general rewards
Instead of optimizing for cross-entropy (not final evaluation metric), optimize directly 
for the evaluation metric e.g. BLEU score

- BLEU score only defined on raw text after sampling from softmax
- Not differentiable through standard gradient methods.

[Ranzato et. al., ICLR 2016]
Slides from Wang, ACL 2018 tutorial BLEU score



Applications: Hard attention
Hard attention ‘gates’ (0/1) rather than soft attention (softmax between 0-1)

- Can be seen as discrete layers in between differentiable neural net layers

[Xu et. al., ICML 2015]
[Chen et al., ICMI 2017]

Hard 
attention 

scores (0/1)

Controller:
input to hard 

attention scores

classification 
accuracy

sentiment/emotion

Hard attention 
scores (0/1)

Input
Classification 

accuracy

controller classifier

reward



Applications: Hard attention

[Xu et. al., ICML 2015]
[Chen et al., ICMI 2017]

Hard attention ‘gates’ (0/1) rather than soft attention (softmax between 0-1)
- Can be seen as discrete layers in between differentiable neural net layers

Sentiment analysis,
emotion recognition

Image captioning



Applications: RL and Language



RL and Language

Luketina et. al., IJCAI 2019



Language-conditional RL

Instruction following Rewards from instructions Language in S and A



Language-assisted RL

● Language for communicating domain knowledge
● Language for structuring policies



Language-assisted RL: Domain knowledge

● Properties of entities in the environment are annotated by language

Narasimhan et. al., JAIR 2018

from Amazon Mturk :-(
asked annotators to play 
the game and describe 
entities
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Language-assisted RL: Domain knowledge

● Properties of entities in the environment are annotated by language

Narasimhan et. al., JAIR 2018

Grounded language learning
Helps to ground the meaning of text to the dynamics, transitions, and rewards

Language helps in multi-task learning and transfer learning

Fusion problem
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Branavan et. al., JAIR 2012

● Learning to read instruction manuals
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Language-assisted RL: Domain knowledge

● Learning to read instruction manuals

Branavan et. al., JAIR 2012

A: action-description
S: state-description

Relevant sentences



Language-assisted RL: Domain knowledge

● Learning to read instruction manuals

Branavan et. al., JAIR 2012

Grounded language learning
Ground the meaning of text to the dynamics, transitions, and rewards

Language helps in learning



Language-assisted RL: Domain knowledge

● Learning to read instruction manuals

Branavan et. al., JAIR 2012

Language is most important at the start when you don’t have a good policy
Afterwards, the model relies on game features



Language for structuring policies

● Composing modules for Embodied QA

Das et. al., CoRL 2018



Language for structuring policies

● Composing modules for Embodied QA

Das et. al., CoRL 2018



Summary of RL methods

Value iteration
Policy iteration

(Deep) Q-learning

Policy gradients

Actor (policy)
Critic (Q-values)



Summary of applications
Stochastic optimization Text generation

LM

disc reward

sentences

Discrete layersGeneral reward functions



Summary of applications
Instruction following

“Jump over the skull 
while going to the left”

Language for rewards

Language as domain knowledge

Language to structure policies


