
Intro to Reinforcement Learning Part II
11-777 Multimodal Machine Learning Fall 2020

Paul Liang

pliang@cs.cmu.edu
@pliang279

Admin

Instructions for the midterm presentations are on piazza resources:

- https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kg742kik5kv6tg
- Deadline for pre-recorded presentation: Friday, November 13th, 2020 at 8pm ET
- 7 minutes, mostly about error analysis and updated ideas, don't try to present

everything...

Instructions for midterm report are also online:

- https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kgraer741fw3n4
- Deadline: Sunday, November 15th, 2020
- 8 pages for teams of 3 and 9 pages for the other teams
- Multimodal baselines, error analysis, proposed ideas

Start working on midterm assignments now!

https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kg742kik5kv6tg
https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kgraer741fw3n4

Admin

Reading wildcard
- Each student gets one (1) wild card to be

used as a way to extend by up to 24 hours
their deadline for the summary deadline
(which is usually Fridays at 8pm)

- See details on piazza

Admin

Piazza live Q&A

Used Materials

Acknowledgement: Some of the material and slides for this lecture were
borrowed from Pieter Abbeel, Yan Duan, Xi Chen, and Andrej Karpathy’s Deep RL
Bootcamp at UC Berkeley, as well as Katerina Fragkiadaki and Ruslan
Salakhutdinov’s 10-703 course at CMU, who in turn borrowed much from Rich
Sutton’s class and David Silver’s class on Reinforcement Learning.

Recap: Markov Decision Process (MDPs)

Trajectory

Slides from Fragkiadaki

We aim to maximize total discounted reward:

Return

Discount
factor

Policy

Definition: A policy is a distribution over actions given states

- A policy fully defines the behavior of an agent
- The policy is stationary (time-independent)
- During learning, the agent changes its policy as a result

of experience

Special case: deterministic policies

Goal:

Return:

Recap: MDPs, Returns, Policies

Reinforcement Learning vs Supervised Learning

● Sequential decision making
● Maximize cumulative reward
● Sparse rewards
● Environment maybe unknown

● One-step decision making
● Maximize immediate reward
● Dense supervision
● Environment always known

Reinforcement Learning Supervised Learning

Fully known
MDP

states
transitions

rewards

Bellman
optimality
equations

Bellman
expectation
equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Recap: Exact methods

Fully known
MDP

states
transitions

rewards

Bellman
optimality
equations

Bellman
expectation
equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Recap: Exact methods

Iterate over and storage for all states and actions
Requires small, discrete state and action space

Update equations require fully observable MDP and known transitions

Recap: Tabular Q-learning
MDP
with

unknown
transitions

Replace true
expectation over
transitions with

estimates

Bellman
optimality
equations

targetold estimate

Tabular Q-learning

simulation and exploration, epsilon greedy is important!

Recap: Tabular Q-learning
MDP
with

unknown
transitions

Bellman
optimality
equations

targetold estimate

simulation and exploration, epsilon greedy is important!

Tabular: keep a |S| x |A| table of Q(s,a)
Still requires small and discrete state and action space

How can we generalize to unseen states?

Tabular Q-learning

Replace true
expectation over
transitions with

estimates

Recap: Deep Q-learning

targetold estimate

Correlated samples + non-stationary targets

Recap: Deep Q-learning
- Sample random mini-batch of transitions (s,a,r,s’) from D
- Compute Q-learning targets w.r.t. old fixed parameters w-

- Optimize MSE between Q-network and Q-learning targets

- Use stochastic gradient descent
- Update w- with updated w every ~1000 iterations

Recap: Deep Q-learning

targetold estimate

Works for high-dimensional state and action spaces
Generalizes to unseen states

Stochastic gradient descent + Exploration + Experience replay + Fixed Q-targets

Recap: Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a)

Recap: Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a)

Optimal policy can also be found by maximizing over V*(s’) with one-step look ahead

Contents

● Policy gradient methods
● Actor-critic
● Applications: Language and RL
● Applications: RL for language (e.g. text generation)

Value-based and Policy-based RL

State value functions Action value functions

Slides from Fragkiadaki

Value-based and Policy-based RL

Slides from Fragkiadaki

Directly learning the policy

Q(s,a) and V(s) very high-dimensional
But policy could be just ‘open/close hand’

Directly learning the policy

Q(s,a) and V(s) very high-dimensional
But policy could be just ‘open/close hand’

Slides from Fragkiadaki

Value-based and Policy-based RL

Slides from Fragkiadaki

Value-based and Policy-based RL

Policy-based Value-based

Slides from Fragkiadaki

Pong from pixels

Slides from Karpathy

Pong from pixels

Slides from Karpathy

Pong from pixels

Network sees +1 if it scored a point, and -1 if it was scored against.
How do we learn these parameters?

Slides from Karpathy

Pong from pixels

Slides from Karpathy

Pong from pixels

Slides from Karpathy

Pong from pixels

Slides from Karpathy

Pong from pixels

Slides from Karpathy

Pong from pixels

Slides from Karpathy

Pong from pixels

Slides from Karpathy

Pong from pixels

Slides from Karpathy

Pong from pixels

Slides from Karpathy

Pong from pixels

Slides from Karpathy

Pong from pixels

Slides from Karpathy

Pong from pixels

epsilon greedy!

Slides from Karpathy

Pong from pixels

epsilon greedy!

Slides from Karpathy

Pong from pixels

epsilon greedy!

Does not require transition probabilities
Does not estimate Q(), V()

Predicts policy directly

Slides from Karpathy

Pong from pixels

Slides from Karpathy

http://www.youtube.com/watch?v=YOW8m2YGtRg

Policy gradients

Why does this work?

Slides from Karpathy

Formally, let’s define a class of parameterized policies

For each policy, define its value:

Policy gradients

Writing in terms of trajectories

Probability of a trajectory Reward of a trajectory

Policy gradients

Writing in terms of trajectories

Probability of a trajectory Reward of a trajectory

Policy gradients

Formally, let’s define a class of parameterized policies

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy gradients

Gradient ascent on policy parameters

REINFORCE algorithm

REINFORCE algorithm

REINFORCE algorithm

REINFORCE algorithm

Tractable :-)

Can we compute these without knowing the transition probabilities?

We have:

REINFORCE algorithm

Can we compute these without knowing the transition probabilities?

We have:

Thus:

REINFORCE algorithm

Can we compute these without knowing the transition probabilities?

We have:

Thus:

REINFORCE algorithm

And when differentiating: Doesn’t depend on
transition probabilities

Can we compute these without knowing the transition probabilities?

We have:

Thus:

REINFORCE algorithm

And when differentiating:

Therefore when sampling a trajectory, we can estimate gradients:

Doesn’t depend on
transition probabilities

Intuition

Gradient estimator:

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Intuition

Gradient estimator:

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Intuition

Gradient estimator:

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Intuition

Gradient estimator:

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

epsilon greedy

Intuition

Gradient estimator:

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really
hard - can we help this estimator?

Variance reduction with a baseline
Problem: The raw reward of a trajectory isn’t necessarily meaningful. E.g. if all
rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you
expect to get.

Variance reduction with a baseline
Problem: The raw reward of a trajectory isn’t necessarily meaningful. E.g. if all
rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you
expect to get.

Idea: Introduce a baseline function dependent on the state, which gives us an
estimator:

e.g. exponential moving average of the rewards. Provably reduces variance while remaining unbiased.

Actor-critic methods

A better baseline: want to push the probability of an action from a state, if this
action was better than the expected value of what we should get from that state

Recall: Q and V - action value and state value functions!

Actor-critic methods

A better baseline: want to push the probability of an action from a state, if this
action was better than the expected value of what we should get from that state

Recall: Q and V - action value and state value functions!

We are happy with an action a in a state s if Q(s,a) - V(s) is large.
Otherwise we are unhappy with an action if it’s small.

Using this, we get the estimator:

Actor-critic methods

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

Actor-critic methods

Minh et. al., ICML 2016

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

Actor-critic methods

Actor: decides what actions to take

Critic: evaluates how good the action is

Minh et. al., ICML 2016

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

Actor-critic methods

Actor: decides what actions to take

Critic: evaluates how good the action is

Minh et. al., ICML 2016

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

Actor-critic methods

Actor: decides what actions to take

Critic: evaluates how good the action is

Minh et. al., ICML 2016

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

Actor-critic methods

Actor: decides what actions to take

Critic: evaluates how good the action is

Minh et. al., ICML 2016

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

Exploration + experience replay
Decorrelate samples

Fixed targets

Summary of RL methods

Value iteration
Policy iteration

(Deep) Q-learning

Policy gradients

Actor (policy)
Critic (Q-values)

Slides from Fragkiadaki

Applications: Stochastic optimization

Stochastic Optimization

Stochastic Optimization

Evidence lower bound

VAEs

Stochastic Optimization

Evidence lower bound

Solve by reparameterization!

VAEs

Stochastic Optimization

VAEs

x

z

x

Evidence lower bound

Solve by reparameterization!

We require that:
- z is continuous
- q(z) is reparameterizable
- f(z) is differentiable wrt

Stochastic Optimization

VAEs

x

z

x

Evidence lower bound

Solve by reparameterization!

RL

Reward

We require that:
- z is continuous
- q(z) is reparameterizable
- f(z) is differentiable wrt

Stochastic Optimization

VAEs

x

z

x

Evidence lower bound

In RL (at least for discrete actions):
- T is a sequence of discrete actions
- p(T;) is not reparameterizable
- r(T) is a black box function
i.e. the environment

Solve by reparameterization!

RL

Reward

Reparameterization???

We require that:
- z is continuous
- q(z) is reparameterizable
- f(z) is differentiable wrt

s

a

r

???

Stochastic Optimization

VAEs

x

z

x

Evidence lower bound

In RL (at least for discrete actions):
- T is a sequence of discrete actions
- p(T;) is not reparameterizable
- r(T) is a black box function
i.e. the environment

REINFORCE is a general-purpose solution!

Solve by reparameterization!

RL

Reward

Reparameterization???

We require that:
- z is continuous
- q(z) is reparameterizable
- f(z) is differentiable wrt

s

a

r

???

We want to take gradients wrt of the term:

Revisiting REINFORCE

We want to take gradients wrt of the term:

We can now compute a Monte Carlo estimate:

Revisiting REINFORCE

We want to take gradients wrt of the term:

We can now compute a Monte Carlo estimate:

What we derived: sample trajectories and compute:

Revisiting REINFORCE

We can now compute a Monte Carlo estimate:

What we derived: sample trajectories and compute:

We just need the distribution q() to allow for easy sampling

Revisiting REINFORCE

- z can be discrete or continuous!
- q(z) can be a discrete and continuous distribution! (but must be differentiable wrt)
- f(z) can be a black box!

Applications: Text generation

[Yu et. al., AAAI 2017]

GANs for text generation
1. Text data is discrete

○ Discriminator gradient does not exist for samples from categorical distribution
○ Gradient sparse due to large dictionary size

Applications: Text generation

[Yu et. al., AAAI 2017]

More efficient search strategy for most likely sentence

GANs for text generation
1. Text data is discrete

○ Discriminator gradient does not exist for samples from categorical distribution
○ Gradient sparse due to large dictionary size

Applications: Text generation

[Yu et. al., AAAI 2017]

More efficient search strategy for most likely sentence

LM

disc reward

GANs for text generation
1. Text data is discrete

○ Discriminator gradient does not exist for samples from categorical distribution
○ Gradient sparse due to large dictionary size

complete
sentences

Training generator:
After sampling all words using Monte Carlo
search, compute reward for generator
based on discriminator feedback
- if similar to real text, high reward
- if different from real text, low reward

Applications: Text generation

[Yu et. al., AAAI 2017]

GANs for text generation
1. Text data is discrete

○ Discriminator gradient does not exist for samples from categorical distribution
○ Gradient sparse due to large dictionary size Training generator:

After sampling all words using Monte Carlo
search, compute reward for generator
based on discriminator feedback
- if similar to real text, high reward
- if different from real text, low reward

More efficient search strategy for most likely sentence

complete
sentences LM

disc reward

Training discriminator is easy - all params are differentiable

Applications: Text generation

[d’Autume et. al., NeurIPS 2019]

GANs for text generation

1. Text is sensitive to noise (small disturbances easily alters the meaning of text)
2. Sparse discriminator feedback (feedback only makes sense on full sentences)

+ Instead of discriminator reward after whole sentence, use
a recurrent discriminator which compares generated vs
real prefixes to give dense rewards at all time steps
+ large variance from REINFORCE: use large batch sizes
and subtract baseline (moving average of rewards)
+ other tricks, see paper

prefixes LM

disc reward

Applications: Text generation

[d’Autume et. al., NeurIPS 2019]

GANs for text generation

1. Text is sensitive to noise (small disturbances easily alters the meaning of text)
2. Sparse discriminator feedback (feedback only makes sense on full sentences)

Other approaches as well without using policy gradients
- discriminator directly comparing in logit space
- use Gumbel softmax (Jang et al. 2016)
- see more in
https://www.cl.uni-heidelberg.de/statnlpgroup/blog/rl4nmt/
and
https://deepgenerativemodels.github.io/assets/slides/cs236_
lecture15.pdf

https://www.cl.uni-heidelberg.de/statnlpgroup/blog/rl4nmt/
https://deepgenerativemodels.github.io/assets/slides/cs236_lecture15.pdf
https://deepgenerativemodels.github.io/assets/slides/cs236_lecture15.pdf

Applications: Dialog generation

[Li et. al., EMNLP 2017]
Slides from Wang, ACL 2018 tutorial

GANs for dialog generation and evaluation

Sample:
Input message
Response 1
Response 2
…
Response K

Define rewards:
1. Ease of answering
2. Information flow
3. Meaningfulness
4. Discriminator wrt
human dialog

Applications: Optimizing general rewards
Instead of optimizing for cross-entropy (not final evaluation metric), optimize directly
for the evaluation metric e.g. BLEU score

- BLEU score only defined on raw text after sampling from softmax
- Not differentiable through standard gradient methods.

[Ranzato et. al., ICLR 2016]
Slides from Wang, ACL 2018 tutorial BLEU score

Applications: Hard attention
Hard attention ‘gates’ (0/1) rather than soft attention (softmax between 0-1)

- Can be seen as discrete layers in between differentiable neural net layers

[Xu et. al., ICML 2015]
[Chen et al., ICMI 2017]

Hard
attention

scores (0/1)

Controller:
input to hard

attention scores

classification
accuracy

sentiment/emotion

Hard attention
scores (0/1)

Input
Classification

accuracy

controller classifier

reward

Applications: Hard attention

[Xu et. al., ICML 2015]
[Chen et al., ICMI 2017]

Hard attention ‘gates’ (0/1) rather than soft attention (softmax between 0-1)
- Can be seen as discrete layers in between differentiable neural net layers

Sentiment analysis,
emotion recognition

Image captioning

Applications: RL and Language

RL and Language

Luketina et. al., IJCAI 2019

Language-conditional RL

Instruction following Rewards from instructions Language in S and A

Language-assisted RL

● Language for communicating domain knowledge
● Language for structuring policies

Language-assisted RL: Domain knowledge

● Properties of entities in the environment are annotated by language

Narasimhan et. al., JAIR 2018

from Amazon Mturk :-(
asked annotators to play
the game and describe
entities

Language-assisted RL: Domain knowledge

● Properties of entities in the environment are annotated by language

Narasimhan et. al., JAIR 2018

Fusion problem

Language-assisted RL: Domain knowledge

● Properties of entities in the environment are annotated by language

Narasimhan et. al., JAIR 2018

Fusion problem

Language-assisted RL: Domain knowledge

● Properties of entities in the environment are annotated by language

Narasimhan et. al., JAIR 2018

Grounded language learning
Helps to ground the meaning of text to the dynamics, transitions, and rewards

Language helps in multi-task learning and transfer learning

Fusion problem

Language-assisted RL: Domain knowledge

Branavan et. al., JAIR 2012

● Learning to read instruction manuals

Language-assisted RL: Domain knowledge

Branavan et. al., JAIR 2012

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

● Learning to read instruction manuals

Language-assisted RL: Domain knowledge

Branavan et. al., JAIR 2012

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

● Learning to read instruction manuals

Language-assisted RL: Domain knowledge

Branavan et. al., JAIR 2012

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

● Learning to read instruction manuals

Language-assisted RL: Domain knowledge

Branavan et. al., JAIR 2012

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

● Learning to read instruction manuals

Language-assisted RL: Domain knowledge

● Learning to read instruction manuals

Branavan et. al., JAIR 2012

A: action-description
S: state-description

Relevant sentences

Language-assisted RL: Domain knowledge

● Learning to read instruction manuals

Branavan et. al., JAIR 2012

Grounded language learning
Ground the meaning of text to the dynamics, transitions, and rewards

Language helps in learning

Language-assisted RL: Domain knowledge

● Learning to read instruction manuals

Branavan et. al., JAIR 2012

Language is most important at the start when you don’t have a good policy
Afterwards, the model relies on game features

Language for structuring policies

● Composing modules for Embodied QA

Das et. al., CoRL 2018

Language for structuring policies

● Composing modules for Embodied QA

Das et. al., CoRL 2018

Summary of RL methods

Value iteration
Policy iteration

(Deep) Q-learning

Policy gradients

Actor (policy)
Critic (Q-values)

Summary of applications
Stochastic optimization Text generation

LM

disc reward

sentences

Discrete layersGeneral reward functions

Summary of applications
Instruction following

“Jump over the skull
while going to the left”

Language for rewards

Language as domain knowledge

Language to structure policies

