Carnegie Mellon University
Language Technologies Institute

Intro to Reinforcement Learning Part |
11-777 Multimodal Machine Learning Fall 2020

Paul Liang

pliang@cs.cmu.edu
Y @pliang279

Admin Start working on midterm assignments now!
Instructions for the midterm presentations are on piazza resources:

- https://piazza.com/class profile/get resource/kcnriiwqg24g9éz7/ka742kik5kvétg

- Deadline for pre-recorded presentation: Friday, November 13th, 2020 at 8pm ET

- 7 minutes, mostly about error analysis and updated ideas, don't try to present
everything...

Instructions for midterm report are also online:

- https://piazza.com/class_profile/get_resource/kcnrliwg24qéz7/kgraer741fw3n4
- Deadline: Sunday, November 15th, 2020

- 8 pages for teams of 3 and 9 pages for the other teams

- Multimodal baselines, error analysis, proposed ideas

https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kg742kik5kv6tg
https://piazza.com/class_profile/get_resource/kcnr11wq24q6z7/kgraer741fw3n4

Admin

E note @369 © 7 fa ~

Readlng wildcard
Each student gets one (1) wild card to be
used as a way to extend by up to 24 hours
their deadline for the summary deadline

Wild card for Reading Assignment summaries
Hello! Bonjour!

Based on your recent feedback and internal discussions, we decided to offer all students one wild card for the Reading Assignmen

Each student gets one (1) wild card to be used as a way to extend by up to 24 hours their deadline for the summary deadline (whict

(Wh iC h iS usua I Iy Fridays at 8 p m) hours). There is no need to send a note via Piazza for this wild card. We will automatically use your wild card the first time you subn
- See d eta il son p|a ZZa We updated the syllabus with details about both wild card types (reading assignment summaries and project assignments). We hop
Best,
LP

P.S. If you lost some points in previous weeks because of a late submission (less than 24 hours) of your reading assignment summs

readings logistics

m good note | 0

Admin

Piazza live Q&A

« > cC
plazza

< | Unread Updated Unresolved Following

& piazza.com/class/kcnr11wq24q6z72cid=43

(Bl prats @ | (@l tve_qga

* @
[

M7TT-A~Y Q&A Resources Statistics

Manage Class “‘ Louis-Philippe Morency

project readings logistics other lectures

Ban User Console * Question History: :)

Q- n question @44

disable history

Move to class feed

Upvote Close upvotes o~

& New Post l R Search or add a post...

]

~ LIVE Q8A

& Instr Question
When is the lecture starting?

~ PINNED

W Instr Project preferences form

As mentioned in the lecture today, we are
releasing the project preference form here -
https://forms.gle/q2aKPSjzgvNFk3q

W Instr Course website

Hi, Welcome to the course! Here is the link to the
course website https://cmu-multicomp-
lab_github.io/mmmi-course/fall2

Search for Teammates!

~ Question

i ing?
9/8/20 When is the lecture starting?

o
+

9/3/20

the instructors' answer, where instructors collectively construct a single answer

live_q&a

good question | 0 Updated Just now by Louis-Philippe Morency

9/1/20

At 3:20pm EST

7/15/20

good answer | 0 Updated Just now by Louis-Philippe Morency

Please share your questions and comments on Piazza Live Q&A

‘ Live responses by your TAs and follow-up
by the instructor after the main lecture

Used Materials

Acknowledgement: Some of the material and slides for this lecture were
borrowed from Pieter Abbeel, Yan Duan, Xi Chen, and Andrej Karpathy’s Deep RL
Bootcamp at UC Berkeley, as well as Katerina Fragkiadaki and Ruslan
Salakhutdinov’s 10-703 course at CMU, who in turn borrowed much from Rich
Sutton’s class and David Silver’s class on Reinforcement Learning.

Recap: Markov Decision Process (MDPs)

An MDP is defined by:

Set of states §

Set of actions 4

Transition function P(s’| s, a)
Reward function R(s, a, s’)
Start state s,

Discount factor y

Horizon H

Slides from Fragkiadaki

"I A |

gent|
state reward action
S R, A
Rt+l (
ey .
|Sx+l ; Environment]47
Trajectory

S0, Q0,70,51,A1,71,52,02,72, ...

Return

We aim to maximize total discounted reward:

Gt = Rip1 +Y7Ryg2 + ... = ZW’CRHICH
k=0

biscount Y Close to 0 leads to "myopic” evaluation
factor ~ close to 1 leads to "far-sighted” evaluation

Policy

Definition: A policy is a distribution over actions given states

n(a|s) =Pr(A,=alS,=s),Vt

- A policy fully defines the behavior of an agent

- The policy is stationary (time-independent)

- During learning, the agent changes its policy as a result
of experience

Special case: deterministic policies

Recap: MDPs, Returns, Policies

An MDP is defined by:

Set of states §

Set of actions 4

Transition function P(s’|s, a)
Reward function R(s, a, 5')
Start state s,

Discount factor y

Horizon H

| Agent ||
state reward action

St RI Ar

. Rt+1 (
< Environment]4—
\
Return:

Gi=Rip1 + VR0 + ... = ZWkRﬂ-kH
k=0

t=0

- H
- *- Goal: arg max E Z V' Ry|m
|

s

Reinforcement Learning vs Supervised Learning

Reinforcement Learning

Sequential decision making
Maximize cumulative reward
Sparse rewards

Environment maybe unknown

Supervised Learning

One-step decision making
Maximize immediate reward
Dense supervision
Environment always known

Recap: Exact methods g+ 4) = E., [r(w’sl) + ymax Q*(S,,a,)}

Bellman Q* (S, a,) Q-value iteration
optimality

Fully known) * i i
K/IDP equations V (S) Value iteration
states
transitions
rewards Bellmap Qﬂ- (37 a,) Q-policy iteration
expectation
equations VT (8) Policy iteration

Repeat until policy converges. Guaranteed to converge to optimal policy.

Recap: Exact methods g+ 4) = E., [r(s,a,s') ymax Q" (S,ﬂ,)]

Bellman Q* (S, a,) Q-value iteration

Fully known optimality a0 . .
K/IDP equations V (S) Value iteration
states

transitions

rewards BeIITip Qﬂ- (5 ; a) Q-policy iteration
expectation
equations VT (8) Policy iteration

Repeat until policy converges. Guaranteed to converge to optimal policy.

Iterate over and storage for all states and actions
Requires small, discrete state and action space
Update equations require fully observable MDP and known transitions

Recap: Tabular Q-learning

M?E Bellman Repltac;.e true
i — optimality —— expectation over Tabular Q-learning
unknown . transitions with
o equations X
transitions estimates

g ~ P(s/ | S, a) simulation and exploration, epsilon greedy is important!

Q*(s,a) = Eg ['r(s, a,s’) + Y max Q* (s, a’)]

old estimate target

Recap: Tabular Q-learning

MDP Replace true

h Bellman tati
i — optimality —— expectation over Tabular Q-learning
unknown . transitions with
o equations X
transitions estimates

g ~ P(s | S, a) simulation and exploration, epsilon greedy is important!

Q* <S7 a’) — ESI |:’r(87 a’7 8/) + fY H]C-La,JX Q* (8,7 a’/):|

old estimate target

Qk+1(8a a’) A Qk’(sa CL) +a (T(87 a, S/) + ’YHLE}X Qk(sla CI,/) - Qk(37 CL))

Tabular: keep a |S| x |A] table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?

Recap: Deep Q-learning

Q(s,a;,w) - Q(s,a,w) Q*(S, a) — Es’ [7‘(8 a 8,) —+ Yy max Q*<S/, CL,)]

T T T = .
old estimate target
/\/\ Li(w;) = Es,a,r,s'~D;
w
s

2
(r + v m;,’x Q(s', a: Wi_) — Q(s, a; w,-))]
. 8 F B J
L ol Y

Q-learning target Q-network

Correlated samples + non-stationary targets

Recap: Deep Q-learning

. . , S51,d1, 2,52

- Sample random mini-batch of transitions (s,a,r,s’) from D S, a0, 3, 53
- Compute Q-learning targets w.r.t. old fixed parameters w- e

53,43, I'4, 54

- Optimize MSE between Q-network and Q-learning targets

Sty dpy Ne4-1, St41

2 Q(s,aq,w) - Q(s,a,,w)
! 8 . .
(r + 7 max Q(s',a;w) — Q(s, a w,-))
N\ 7 X
Y Y

® .
Q-learning target Q-network /\/\
w
I

Li(Wi) = Es,a,r,s’N’D,-

- Use stochastic gradient descent
- Update w- with updated w every ~1000 iterations

Recap: Deep Q-learning

/ / /
i~] Q*(s,a) = Eg [r(s, a,s) + 7 max Q*(s',a)]
T old estimate target
2
/\/\ Lilwi) =Ee s ratiip, (r + 7y mazlax Qs 4 w) — Q(s, a; w,-))]
w
N\ 7z 5 .,
T Y Y
Q-learning target Q-network

S

Stochastic gradient descent + Exploration + Experience replay + Fixed Q-targets

Works for high-dimensional state and action spaces
Generalizes to unseen states

Recap: Obtaining the optimal policy

Optimal policy can be found by maximizing over Q*(s,a)

. 1 —e, if a = argmax, Q*(s,a)
m(als) = € else

Recap: Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a)
7)) = {1 — €, if a = argmax, Q*(s,a)
€, else

Optimal policy can also be found by maximizing over V*(s’) with one-step look ahead

. 1 —e, if a = argmax, Ey [r(s,a,s’) +yV*(s')]
m(als) = {e else

V*(s)

Contents

Policy gradient methods

Actor-critic

Applications: Language and RL

Applications: RL for language (e.g. text generation)

Value-based and Policy-based RL

» Value Based
Learned Value Function

Implicit policy (e.g. e-greedy)

State value functions Action value functions

V7 (s) Q" (s,a)
V*(s) Q" (s,a)

7" (als) = 1-¢ ifa=argmax,Ey[r(s,a,s) + V()] 7 (als) = 1—e¢ ifa=argmax, Q*(s,a)
€, else €, else

Slides from Fragkiadaki

Value-based and Policy-based RL

» Value Based

- Learned Value Function

- Implicit policy (e.g. e-greedy)

» Policy Based
- No Value Function

- Learned Policy

mo(s,a) =Pla | s, 0]

Slides from Fragkiadaki

hidden layer
' 2 probability of
?’:‘" ,‘//'\ .moving UP
ZavAYAv. AN .
é;‘&k\

SN
Vats

raw pixels

Directly learning the policy

= Often 77 can be Simpler than QorV Q(s,a) and V(s) very high-dimensional

= E.g., robotic grasp But policy could be just ‘open/close hand

Directly learning the policy

= Often 77 can be simpler than Q or V Q(s,a) and V(s) very high-dimensional

= E.g., robotic grasp But policy could be just ‘open/close hand

= V:doesn’t prescribe actions

= Would need dynamics model (+ compute 1 Bellman back-up)

= Q: need to be able to efficiently solve arg max Qg(s, u)
u

= Challenge for continuous / high-dimensional action spaces’

7T*(a|8) _ 1-— €, lf a = argmaXa]Es/ [T(Sa a, S/) + ’YV*(S/)] ﬂ-*(a|s) _ 1 — €, if a = arg maXa Q*(S, a)
€, else €, else

Slides from Fragkiadaki

Value-based and Policy-based RL

» Value Based
Learned Value Function
Implicit policy (e.g. e-greedy)

» Policy Based Value Function Policy

No Value Function

Learned Policy Actor

Value-Based Critic

Policy-Based

» Actor-Critic
Learned Value Function

Learned Policy
Slides from Fragkiadaki

Value-based and Policy-based RL

Policy-based Value-based
= Conceptually: Optimize what you care Indirect, exploit the problem
about structure, self-consistency
= Empirically: More compatible with rich More compatible with
architectures (including exploration and off-policy
recurrence) learning
More versatile More sample-efficient when
they work
More compatible with
auxiliary objectives

Slides from Fragkiadaki

Pong from pixels

Slides from Karpathy

Pong from pixels

e.g raw pixels hidden layer
height width ‘\\s'l probability of
é}&,}% ‘ moving UP
160 x 80} ZES0
array of

NAEXNCT
RIS w
V2 0%\

Slides from Karpathy

Pong from pixels

raw pixels hidden layer

e.g., . . .
height width q{/{ . prob.ability of
N2 7 moving UP
[80 x 80] : XA
array of }g@w,w
<z

Network sees +1if it scored a point, and -1if it was scored against.
How do we learn these parameters?

Slides from Karpathy

Pong from pixels

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)

Slides from Karpathy

Pong from pixels

Suppose we had the training labels...
(we know what to do in any state)

Slides from Karpathy

(x1,UP)
(x2,DOWN)
(x3,UP)

maximize:

Zi log p(yi|xi)

raw pixels

hldden layer

Vo "VA
29 OAV‘

VZ&

Pong from pixels

Except, we don’t have labels...

raw pixels hidden layer

probability of
‘. moving UP
Y,

Should we go UP or DOWN?

Slides from Karpathy

Pong from pixels

Let’s just act according to our current policy...

raw pixels hidden layer

probability of Rollout the policy
and collect an
episode

WIN

Slides from Karpathy

Pong from pixels

Collect many rollouts...

4 rollouts:

o’ P L@ UP ,@DOWN, g DOWN GDOWN o UP o \\IN
Pelell P @MW o U .o .0 LOSE
o DOWN g, DOWN, o DOWN,_ g DOWN o UP g LOSE
PgalellL ro—F .90 F .o WIN

Slides from Karpathy

Pong from pixels

Not sure whatever we did here, but
apparently it was good.

® UP uP >‘DOWN>. DOWN»,DOWN* uP »® | WIN
PY DO DOWN* uP r® uP r® LOSE
P UP DOWN».DOWN* DOWN». UP r® LOSE
P DO DOWN* UP r® uP r® WIN

Slides from Karpathy

Pong from pixels

Not sure whatever we did here, but it was bad.

® .0 @ WIN
o> LOSE
oL .0 L * .o LOSE
oo™ WIN

Slides from Karpathy

Pong fro

Pretend every action we took here
was the correct label.

m pixels

maximize: logp(y, Ixi)

Pretend every action we took
here was the wrong label.

maximize: (—1) * logp(y,- | xi)

P uP DOWN r® uP r®
® DOWN

® UP uP -®

P DOW

WIN
LOSE
LOSE
WIN

Slides from Karpathy

Pong from pixels

Discounting

Blame each action assuming that its effects have
exponentially decaying impact into the future.

Discounted rewards
0.21 024 0.27 -0.81 -0.9

2

A

~

x log p(vi|xi)

-1

0

0

uP DOWN UP uP DOWN

DOWN

3 & 3 $ 5 2 .DOWN » uP P

Reward +1.0
\gamma =0.9

Slides from Karpathy

Reward -1.0

raw pixels hidden layer

Pong from pixels n(als)

1. Initialize a policy network at random

Slides from Karpathy

raw pixels hidden layer

Pong from pixels n(als)

1. Initialize a policy network at random
2. Repeat Forever:
e

Collect a bunch of rollouts with the policy epsilongreedy!

UP DOWN UP UP DOWN DOWN DOWN UP WIN
DOWN o UP UP DOWN UP UP LOSE
® UP . HRE P DOWN=' DOWN> 2 DOWN & DOWN » UP @ LOSE
DOWN o UP UP DOWN UP UP WIN

f i

Slides from Karpathy

raw pixels hidden layer

Pong from pixels n(als)

1. Initialize a policy network at random
2. Repeat Forever:
3
4

. Collect a bunch of rollouts with the policy epsilongreedy!
. Increase the probability of actions that worked well
Pretend every action we took here Pretend every action we took
was the correct label. here was the wrong label.
maximize: log p(y;i | xi) maximize: (—1) * log p(y; | x:) E l'l' Ai * log p()}i |Xi)
UP DOWN UP UP DOWN DOWN DOWN UP WIN
o OWgP g UP gUOWN G W o P o LOSE
up uP DOWN o DOWN_o DOWN_g DOWN_ g UP LOSE
DOWN o UP UP o DOWN o UP uP WIN

Slides from Karpathy

raw pixels hidden layer

Pong from pixels n(als)

1. Initialize a policy network at random
2. Repeat Forever:
e
4.

Collect a bunch of rollouts with the policy epsilongreedy!
Increase the probability of actions that worked well

Pretend every action we took here Pretend every action we took
was the correct label. here was the wrong label.
maximize: log p(y;i | xi) maximize: (—1) * log p(y; | x:) E l'l' Ai * log p()}i |Xi)
uP DOWN_ g UP uP DOWN_o DOWN_ g DOWN_o UP WIN
Does not require transition probabilities
DOWN G UP g UP g DOWN o UP uP LOSE q * P
- - - - - Does not estimate Q(), V()
uP uP DOWN o DOWN_o DOWN_o DOWN o UP LOSE . . .
Predicts policy directly
DOWN o UP uP DOWN uP uP WIN

Slides from Karpathy

Pong from pixels

Slides from Karpathy

http://www.youtube.com/watch?v=YOW8m2YGtRg

Policy gradients

Why does this work?

Initialize a policy network at random
Repeat Forever:
Collect a bunch of rollouts with the policy

S w NP

Increase the probability of actions that worked well

Zi Ai *x logp(yi |x,-)

Slides from Karpathy

Policy gradients

Formally, let’s define a class of parameterized policies [= {7r9, 0 c]Rm}

For each policy, define its value:

J(O)=E nytfrt\ﬂg

Policy gradients

Writing in terms of trajectories 7 — (307 ag,To,S1,01,71,)

Probability of a trajectory Reward ot a trajectory
t
p(38) = mo(aolso)p(s1]s0, ao) r(r)=> 'n
x mg(a1]s1)p(s2|s1,a1) =4
x mp(az|s2)p(s3|s2, az)
X ...

— H p(8t+1 ‘St, at)ﬂ-g(atlst>

t>0

Policy gradients

Writing in terms of trajectories 7 — (30, ap, 7o, S1,a1,71,)

Probability of a trajectory Reward ot a trajectory
t
p(750) = ma(aolso)p(s1]s0,ao) r(r) = ZW Tt
x mg(a1]s1)p(sals1,a1) t20
x mg(az|s2)p(s3|s2, az)
X ...

— Hp<8t+1 |St, at)ﬂ-g(atlst)

t>0

J(@) =E Z 'Ytrt‘ﬂ'e = IETNp(T;H) [T(T)]

t>0

Policy gradients

Formally, let’s define a class of parameterized policies [= {7r9, 0 c Rm}

For each policy, define its value:

JO)=E |> ~'rm
t>0
We want to find the optimal policy

™ = J(6
How can we do this? arg mgnx ()

Gradient ascent on policy parameters

REINFORCE algorithm

Expected reward: J(0) = E. (.0 [7(7)]

_ / r(1)p(7:0) dr

T

REINFORCE algorithm

Expected reward: J(0) = E (.0 [7(7)]

_ / r(Op(ri0) dr | p(r:6) = [plsearlse ar)mo(adse)

>0

Now let's differentiate this: V4.J(0) = /T(T)Vgp(T; 0) dr Intractable! Gradient of an

expectation is problematic when p

T depends on 6

REINFORCE algorithm

Expected reward: J(0) = E (.9 [7(7)]

_ / r(Op(ri0) dr | p(r:6) = [plsearlse ar)mo(adse)

t>0

Now let's differentiate this: V4.J(0) = /T(T)VQP(T; 0) dr Intractable! Gradient of an

expectation is problematic when p
depends on 6

Vop(T;0)
p(7;0)

T

However, we can use a nice trick: Vyp(7;60) = p(7;0)

Y

= p(7;0)Vologp(T;0)

REINFORCE algorithm

Expected reward: J(f) = ETNP(T;Q) (7))

_ / r(Op(ri0) dr | p(r:6) = [plsearlse ar)mo(adse)

>0

expectation is problematic when p
depends on 6

However, we can use a nice trick: va(T; 9) = p(T; 9) Vgp(T; 9)
If we inject this back: p(7;0)

Vol (0) = [(r(r)Valogp(r:0)) p(r:0) dr

=E,p(r0) [1(T) Vo log p(7;0)]

Now let's differentiate this: V4.J(0) = /T(T)Vgp(T; 0) dr Intractable! Gradient of an

T

= p(7;0)Vologp(T;0)

Tractable :-)

REINFORCE algorithm

Can we compute these without knowing the transition probabilities?

We have: p(r;6) = Hp(st+1|8t, as)mo(ag|st)
£>0

REINFORCE algorithm

Can we compute these without knowing the transition probabilities?
We have: p(r;6) = Hp(st+1|8t, as)mo(ag|st)

t>0

Thus:
us log p(T;60) = Z (log p(st+1st, ar) + log mo(ar|st))
t>0

REINFORCE algorithm

Can we compute these without knowing the transition probabilities?

We have: p(r;6) = Hp(st+1|8t, as)mo(ag|st)
£>0

Thus:
"5 logp(130) =Y (log p(st1]se, ar) + log ma(arse))
. 520 . Doesn’'t depend on
And when differentiating: Vg log p(7; 0) § : Vo log mo(at|st) transition probabilities

>0

REINFORCE algorithm

Can we compute these without knowing the transition probabilities?

We have: p(r;6) = Hp(st+1|8t, as)mo(ag|st)

t>0
Thus:
log p(7;0) = Z (log p(si+1(se, ar) + log mo(at|st))
i =20 . Doesn’t depend on
And when differentiating: Vg log p(7; 6) Z Vg log mg(a|st) transition probabilities
>0

Therefore when sampling a trajectory, we can estimate gradients:

VoJ(0) = Erp(ri) [r(7)Vologp(r;0)] = > r(7)Vglog mg(ay|se)

t>0

Intuition

Gradient estimator: VQJ(H) ~ Z T(T)VQ log g (at‘st)

Interpretation: t=>0

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Intuition
Gradient estimator: VQJ(H) ~ Z T(T)VQ log 7y (at‘st)

Interpretation: t=>0

If r(trajectory) is high, push up the probabilities of the actions seen
If r(trajectory) is low, push down the probabilities of the actions seen

Pretend every action we took here
was the correct label.

maximize: logp(y, | Xi)

Pretend every action we took
here was the wrong label.

raw pixels hidden layer

maximize: (—1) * log p(y; | x:)

UP DOWN UP UP DOWN DOWN_ o DOWN UP WIN
DOWN o UP UP DOWN UP UP LOSE
UP UP DOWN o DOWN o DOWN DOWN UP LOSE
DOWN o UP UP DOWN UP UpP WIN
f f

Intuition

Gradient estimator: V@J(@) ~ Z T(T)VQ log 7y (at‘st)
t>0

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization 7 (als,0),Va € A,s € §,0 € R"
Initialize policy weights 6
Repeat forever:
Generate an episode Sy, Ag, Ry,...,S7-1, Ar_1, Ry, following (|-, 6)
For each step of the episode t =0,...,T — 1:
Gt + return from step ¢
0«0+ a’thtVo logvr(AtISg, 0)

Intuition

Gradient estimator: V@J(@) ~ Z T(T)VQ log 7y (at‘st)
t>0

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(als,0),Va € A,s € §,0 € R"
Initialize policy weights 6
Repeat forever:
Generate an episode Sy, Ag, Ry,...,S7-1, Ar_1, Ry| following (|-, 6)
For each step of the episode t =0,...,T — 1:
Gt + return from step ¢
0 — 0 + av' Gy Vg log m(As|S:, 0)

epsilon greedy

Intuition
Gradient estimator: VQJ(H) ~ Z T(T)VQ log g (at‘st)

Interpretation: t=>0

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really
hard - can we help this estimator?

Variance reduction with a baseline

Problem: The raw reward of a trajectory isn't necessarily meaningful. E.g. if all
rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you
expect to get.

Variance reduction with a baseline

Problem: The raw reward of a trajectory isn't necessarily meaningful. E.g. if all
rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you
expect to get.

Idea: Introduce a baseline function dependent on the state, which gives us an
estimator:

Vo (0) = Y (r(r) —b(st)) Vo log mo(axls:)

t>0

e.g. exponential moving average of the rewards. Provably reduces variance while remaining unbiased.

Actor-critic methods

A better baseline: want to push the probability of an action from a state, if this
action was better than the expected value of what we should get from that state

Recall: Q and V - action value and state value functions!

Actor-critic methods

A better baseline: want to push the probability of an action from a state, if this
action was better than the expected value of what we should get from that state

Recall: Q and V - action value and state value functions!

We are happy with an action a in a state s if Q(s,a) - V(s) is large.
Otherwise we are unhappy with an action if it's small.

Using this, we get the estimator:

Vod(0) = Y (Q™ (st,ar) — V™ (s1)) Vo log mo(as|st)

t>0

Actor-critic methods

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

Actor-critic methods

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

__

A3C Policy Learning Module

i connected LSTM

l (1 unit) .
Value Function !
Q(s,a) (
Policy Function : QAT | S)
(3 units) '
. mo(als)

. layer (256 units)
+ (256 units)

Minh et. al., ICML 2016

Actor-critic methods

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

B e e i i i i Critic: evaluates how gOOd the actionis
: A3C Policy Learning Module

i (1 unit)
Value Function .
Q(s,a) (als)
Policy Function o a|s
(¢ units) 5 Actor: decides what actions to take
. mo(als)

i connected LSTM

. layer (256 units)
+ (256 units)

Minh et. al., ICML 2016

Actor-critic methods

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

B e e i i i i Critic: evaluates how gOOd the actionis
: A3C Policy Learning Module

i 2
i (1 unit) i EI(WI) = ES,B,I’,S,ND,- (r + Y maax Q(sl, a,; W]_) - Q(s7 a, WI)) \|
Value Function ! \ ~ J ——
Q (S, Cl) i Q-learning target Q-network
mo(als)

Policy Function

¢ (3 units) Actor: decides what actions to take

Fully
i connected LSTM
. layer (256 units)
+ (256 units)

mo(als)

Minh et. al., ICML 2016

Actor-critic methods

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

B e e i i i i Critic: evaluates how gOOd the actionis
: A3C Policy Learning Module

| 2
i (1 unit) i Ll =B 5 risteiy (r + max Q(s",d;w™) — Q(s, a w,-)) 1
Value Function ! \ ~ J ——
Q (S, CL) ; Q-learning target Q-network

mo(als)

Policy Function :

Actor: decides what actions to take

(3 units) !
Ry g mo(als)
' connecte LSTM ;
| layer (256 units) L Ve (0) ~) (Q7 (st ar) — V™ (s4)) Vg log mo(alse)
i (256 units) i t>0

Minh et. al., ICML 2016

Actor-critic methods

Exploration + experience replay
Decorrelate samples

’ Fixed t t
Problem: we don’'t know Q and V - can we learn them? Ixed targets

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q function)

fmmmm oo, Critic: evaluates how good the action is
: A3C Policy Learning Module

i 2
i (1 unit) i EI(WI) =]ES,B,I',S,ND,- <r + Y maax Q(sl, a,; W]_) - Q(s7 a, WI)) \|
Value Function ! \ ~ J ——
Q (S, Cl) i Q-learning target Q-network
| mo(als)

Policy Function

Actor: decides what actions to take

(3 units) !
Ry g mo(als)
' connecte LSTM ;
| layer (256 units) L VoJ(0) & Y (Q™(s6,ar) — V™ (s1)) Vo log ma(ass:)
i (256 units) i t>0

Minh et. al., ICML 2016

Summary of RL methods

» Value Based

Value iteration
Policy iteration

(Deep) Q-learning . |mplicit policy (e.g. e-greedy)

Learned Value Function

+ Policy Based Value Function Policy

Policy gradients . No Value Function
Learned Policy Act
Value-Based i Policy-Based
Critic
» Actor-Critic
Actor (polic :

Critic (Q(F-)valu);)s) - Learned Value Function

Learned Policy
Slides from Fragkiadaki

Applications: Stochastic optimization

Stochastic Optimization = maxEq,@[f(2)]

Stochastic Optimization = maxEq,@[f(2)]
VAEs

max L(x; 0, ¢) Evidence lower bound
0,9

max B o(z0[log p(x|z; 0)] — Dki(q4(z|x)[|p(2))

n;?bx Eq¢(z|x)[|og p(XlZ; 0)]

T

¢____

q¢(z|x)

inference model

po(x|2)
generative model

Figure courtesy: Kingma & Welling, 2014

Stochastic Optimization = maxEq,@[f(2)]

VAEs

max L(x; 0, ¢) Evidence lower bound

0,¢
max B as(z|x)[108 P(x|2; 0)] — Dki(qs(2]x)|[p(2))
)
max Eg, (z|x)[log p(x|z;0)] Solve by reparameterization!
0,0 Original form Reparameterized form
' S - - -~~~ - T- -0 0T== r--—-—--—--—--——=—=—=—-—=—=—=—=—=7=-1
I ! |
-1 0 : f : E Backprop f :
. !)
q¢(2|x)] pe(x|2) C e 2 "t't'l'{{ e ! l I ! : Deterministic node
. ! . : i q(z|d,x) : —> : of/07; L2 = 9(d.x,e) :
inference model generative model | e A, o : / / I | . - Random node
|
l C |
| [1 0f/ D¢ \@ X ~pe)
N I ! ' |
- - | | , = 0L/0¢ |
| |]

Figure courtesy: Kingma & Welling, 2014 - == - - - - -~ - - - - ———-— oo oo

Stochastic Optimization = maxEq,@[f(2)]
VAEs

max L(x; 0, ¢) Evidence lower bound

0,9
nelisx Eq¢(z|x) [IOg p(X|Z; 0)]
Solve by reparameterization!
X
p(x|z;6) We require that:

- zis continuous
z ‘ - g(z) is reparameterizable
- f(2) is differentiable wrt ¢

qqg (Z |X) Latent distribution

e Sample z ~ q4(2)
o Sample e ~ N(0,/), z= p+ o€

Stochastic Optimization

VAEs

max L(x; 0, ¢) Evidence lower bound

0,9
ne‘?;sx Eq¢(z|x) [|Og p(X|Z; 0)]
Solve by reparameterization!
X
p(x|z;6) We require that:

- zis continuous
z ‘ - g(z) is reparameterizable
- f(2) is differentiable wrt ¢

q¢ (Z |X) Latent distribution

e Sample z ~ q4(2)
o Sample e ~ N(0,/), z= p+ o€

max E%(z)[f(z)]

¢
RL
md?x J(9) Reward
mq?x ETNp(T;¢) [I’(T)]

Stochastic Optimization

VAEs

max L(x; 0, ¢) Evidence lower bound

0,

¢

ng?;&X Eq¢(z|x)[|0g p(X|Z; 0)]

p(x|z;0)

e (2|x)

Solve by reparameterization!

X
We require that:

- zis continuous
z ‘ - g(z) is reparameterizable
- f(2) is differentiable wrt ¢

Latent distribution

e Sample z ~ q4(2)
o Sample e ~ N(0,/), z= p+ o€

max Eq¢(z) [f(Z)]

¢
RL
md:j\x J(9) Reward
mgx Errop(rig)r(T)]

Reparameterization???

In RL (at least for discrete actions):

- T is a sequence of discrete actions
- p(T; qb) is not reparameterizable

- r(T) is a black box function

i.e. the environment

277

mp(als)

O > =

n

Stochastic Optimization

VAEs

max L(x; 0, ¢) Evidence lower bound

0,9
ng?bx Eq¢(z|x) [|Og p(X|Z; 0)]
Solve by reparameterization!
X
p(x|z;6) t We require that:

- zis continuous
z ‘ - g(z) is reparameterizable
t - f(2) is differentiable wrt ¢

qqg (Z |X) Latent distribution

e Sample z ~ q4(2)

X o Sample e ~ N(0,/), z= p+ o€

max Eq,(2)[f(2)]
RL
maxJ(¢) Rewarc
mgx ETNP(T;qs) [r(7)]

Reparameterization??? 222
In RL (at least for discrete actions):

- T is a sequence of discrete actions

- p(T; @) is not reparameterizable Tp(als)
- r(T) is a black box function

i.e. the environment

REINFORCE is a general-purpose solution!

O > =

n

Revisiting REINFORCE
X Eq,(2)[f(2)]

We want to take gradients wrt ¢ of the term:

VoEqy2)|f(2)] = Eqy(z) [f(2) Vg log q4(2)]

Revisiting REINFORCE
max Eq,(2)[f(2)]

We want to take gradients wrt qb of the term:

VoEqy2)|f(2)] = Eqy(z) [f(2) Vg log q4(2)]

We can now compute a Monte Carlo estimate:

Sample z!,--- 2K from q,(z) and estimate

VgEq,(2)lf(2)] = % Y f(z)Vg log gs(2¥)

Revisiting REINFORCE
max Eq,(2)[f(2)]

We want to take gradients wrt q§ of the term:

VoEqy2)|f(2)] = Eqy(z) [f(2) Vg log q4(2)]

We can now compute a Monte Carlo estimate:

Sample z!,--- 2K from q,(z) and estimate

VgEq,(2)lf(2)] = % Y f(z)Vg log gs(2¥)

vVVvIidl vw UCTIIVCU. DAl IPIT LI gjTLLluUlITO dliu LUITIPDU LT,

VoJ (0

~ Y r(r)

t>0

YV log mg(at|st)

Revisiting REINFORCE

X Eq,(2)[f(2)]
We can now compute a Monte Carlo estimate:

Sample z!,--- | zX from q,(z) and estimate
1
VoEa,@lf(2)] = Y f(z)Vglog gs(2¥)
P

VoJ(0) ~ > r(T)Vglogma(alse)

t>0

We just need the distribution q() to allow for easy sarmpmmg

- Z can be discrete or continuous!
- g(z) can be a discrete and continuous distribution! (but must be differentiable wrt 0)
- f(z) can be a black box!

Applications: Text generation

GANSs for text generation

1. Text data is discrete
o Discriminator gradient does not exist for samples from categorical distribution
o Gradient sparse due to large dictionary size

| 00000
@ True data; 00000
—>0-0000
' 0000 !
Real World . 0000
: LU
. 00000 .

G Generate: ©-0-0-0-0 !
II ‘ ‘ . ' . 1

[Yu et. al., AAAI 2017]

Applications: Text generation

GANSs for text generation

1. Text data is discrete
o Discriminator gradient does not exist for samples from categorical distribution
o Gradient sparse due to large dictionary size

More efficient search strategy for most likely sentence

| N

[; ; Next MC
| 00000 ! . G action search D

@ True data; 0000
—>0-00-090

i Reward
' 0-0-0-0-0 ! ' State
Real World o000 | Vo—L— Reward
! ' Train D :
E.""E Reward
G Generate : 0000 . :
. 0-0-0-0-0 ! : RS

Policy Gradient

[Yu et. al., AAAI 2017]

Applications: Text generation

GANSs for text generation
1. Text datais discrete
o Discriminator gradient does not exist for samples from categorical distribution
o Gradient sparse due to large dictionary size Training generator:

After sampling all words using Monte Carlo
search, compute reward for generator

More efficient search strategy for most likely sentence IPUEE]
gy Y based on discriminator feedback

\ - if similar to real text, high reward
j - if different from real text, low reward
CTTTTTTTTs ! E G Next MC D
True dat , ©-0-0-0-0 ; ! action search complete
{; % M}»‘—Q—Q—Q—O E E Reward sentences LM
' 0-0-0-0-0 ! State
Real World . 00000 ! 1., —L— Reward 1 K)
: — D Sample|z*, - - - ,z" |from [g4(z)|and estimate
:."": Reward
G Generate: 0—0—0—0—0: | 1
| ; ! Reward k k
, 0-0-0-0-0 ! : VE, f(2)l =~ = f(z°)Vylo z
554564 E T | ¢Eqs(2)[f(2)] sz:()¢gq¢()

Policy Gradient .
4 disc reward

[Yu et. al., AAAI 2017]

Applications: Text generation

GANSs for text generation
1. Text datais discrete
o Discriminator gradient does not exist for samples from categorical distribution
o Gradient sparse due to large dictionary size Training generator:

After sampling all words using Monte Carlo
search, compute reward for generator

More efficient search strategy for most likely sentence IPUEE]
gy Y based on discriminator feedback

\ - if similar to real text, high reward
j - if different from real text, low reward
CTTTTTTTTs ! E G Next MC D
True dat , ©-0-0-0-0 ; ! action search complete
{; % M}»‘—Q—Q—Q—O E E Reward sentences LM
' 0-0-0-0-0 ! State
Real World . 00000 ! 1., —L— Reward 1 K)
: — D Sample|z*, - - - ,z" |from [g4(z)|and estimate
:."": Reward
G Generate: 0—0—0—0—0: | 1
| ; ! Reward k k
, 0-0-0-0-0 ! : VE, f(2)l =~ = f(z°)Vylo z
554564 E T | ¢Eqs(2)[f(2)] sz:()¢gq¢()

Policy Gradient .
4 disc reward

[Yu et. al., AAAI 2017] Training discriminator is easy - all params are differentiable

Applications: Text generation

GANSs for text generation

1. Text is sensitive to noise (small disturbances easily alters the meaning of text)
2. Sparse discriminator feedback (feedback only makes sense on full sentences)

Embedding
Matrix

Embedding
Matrix

Embedding
Matrix

-

VZ}W t4+1

Embedding
Matrix

Embedding
Matrix

e

[d’Autume et. al., NeurlPS 2019]

y
di @ Dy }»Ti42

+ Instead of discriminator reward after whole sentence, use
a recurrent discriminator which compares generated vs
real prefixes to give dense rewards at all time steps

+ large variance from REINFORCE: use large batch sizes
and subtract baseline (moving average of rewards)

+ other tricks, see paper

Sample

1
VoEq@lf(@]~ 2>
k

prefixes

from

LM

e (2)

and estimate

f(z")

Vs log g(2°)

disc reward

Applications: Text generation

GANSs for text generation

1. Textis sensitive to noise (small disturbances easily alters the meaning of text)
2. Sparse discriminator feedback (feedback only makes sense on full sentences)

Other approaches as well without using policy gradients

- discriminator directly comparing in logit space
e »@@mﬂ“t - use Gumbel softmax (Jang et al. 2016)
- seemorein

https://www.cl.uni-heidelberg.de/statnlparoup/blog/rl4nmt/

* A\
@-» ey |, emeesong | (7] @ Dy J»Ti+1 and . - '
https://deepgenerativemodels.github.io/assets/slides/cs236
v lecture15.pdf
(Ee)o] e e | >G> (Da) >r42

[d’Autume et. al., NeurlPS 2019]

https://www.cl.uni-heidelberg.de/statnlpgroup/blog/rl4nmt/
https://deepgenerativemodels.github.io/assets/slides/cs236_lecture15.pdf
https://deepgenerativemodels.github.io/assets/slides/cs236_lecture15.pdf

Applications: Dialog generation

GANs for dialog generation and evaluation

Model Breakdown

' I'm fine . EOS Sample: Define rewards:
Generative Model (G) f 1 1 Input message 1. Ease of answering
XX e X KT s KT e Y e Y o XX 0 XY Response 1 2. Information flow
Encoding Decoding Response 2 3. Meaningfulness
[cees] [sese] [soee] [seee] [ses] [5ees] [F5e9) (wow3] 4. Discriminator wrt
Response K human dialog
how are you ? eos I'm fine
Discriminative Model (D)
P= 90% human generated
Sample|z!,- - ,zX from g4(z)|and estimate
|00.0| |0000| |0"°| |0°“| |oooo| Iooool |oooo| |oooo|
how are you ? €os I'm fine

VoErlf@] ~ o S|FE Vs logas(e)

[Li et. al., EMNLP 2017]
Slides from Wang, ACL 2018 tutorial

Applications: Optimizing general rewards

Instead of optimizing for cross-entropy (not final evaluation metric), optimize directly
for the evaluation metric e.g. BLEU score

- BLEU score only defined on raw text after sampling from softmax

- Not differentiable through standard gradient methods.

ho = h hs = &
h1 2 ¢6(@, 1) K 3 ¢9(w2, 2) 4 R [w!l],,w;%]

‘ h g 9 h g
T g UL BN) LU O > T) S PR
~— ~— ~—
CXENT 3 w2
Sample 2!, .- ,zK from g,(z) and estimate
1
VoEaq,olf(2)] = ¢ > If(2)Vslog 4(2")
k

[Ranzato et. al., ICLR 2016]

Slides from Wang, ACL 2018 tutorial BLEU score

Applications: Hard attention

Hard attention ‘gates’ (0/1) rather than soft attention (softmax between 0-1)
- Can be seen as discrete layers in between differentiable neural net layers

LSTM LSTM LSTM LSTM |——— sentiment/emotion
‘ﬁ’ Hard Controller:
attention input to hard
/T\ scores (0/1) attention scores
Xy’ X x3 T
Sample|z!, - - -, z¥|from lg4(z)[and estimate
1 k k
0/1 VgEq,(2)[f(2)] = K Z f(z°)V 4 log gs(z")
c? k
XY i classification
) accuracy
Xr
controller classifier

Hard attention Classification

Input - .
[Xu et. al., ICML 2015] P scores (0/1) accuracy
[Chen et al., ICMI 2017] reward

Applications: Hard attention

Hard attention ‘gates’ (0/1) rather than soft attention (softmax between 0-1)
- Can be seen as discrete layers in between differentiable neural net layers

Sentiment analysis,
emotion recognition

Reject Pass Reject

Figure 3. Visualization of the attention for each generated word. The rough visualizations obtained by upsampling the attention weights
and smoothing. (top)“soft” and (bottom) “hard” attention (note that both models generated the same captions in this example).

!l!ll.l

bird fl bod
[Chen et al., ICMI 2017] " ying ouer ody water

Image captioning

Applications: RL and Language

RL and Language

Task-independent

[...] having the correct key can open the lock [...]
[...] known lock and key device was discovered |...]

[...] unless the correct key is inserted [...]

Pre—trainingl

Pre-trained

Vkey Vskull Vliadder Vrope

Action

/—>

Environment

Task-dependent

Language-assisted

Key Opens a door of the same color as
the key.

Skull They come in two varieties, rolling
skulls and bouncing skulls ... you must
jump over rolling skulls and walk under
bouncing skulls.

Language-conditional

Go down the ladder and walk right im-
mediately to avoid falling off the conveyor
belt, jump to the yellow rope and again
to the platform on the right.

Luketina et. al., IJCAI 2019

Language-conditional RL

Instruction following Rewards from instructions Language in S and A

[
[T
.
e
=
-
=5
e N9

[l

Test

Go to the tall green torch
Go to the red keycard
Go to the green torch Go to the smallest blue object

Language-assisted RL

e lLanguage for communicating domain knowledge
e lLanguage for structuring policies

Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

fromm Amazon Mturk :-(
asked annotators to play
the game and describe
entities

* is 2 randomly moving enemy

' “ . is a stationary immovable wall

Narasimhan et. al., JAIR 2018

Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

Fusion problem

(s, 2)
E is an enemy who chases you State S voi
e
is a stationary collectible :
IE‘ is a randomly moving enemy (2 RO/ L3TH .
u jat ©
“ . is a stationary immovable wall Description Q|
e
’Uzi

Narasimhan et. al., JAIR 2018

Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

Fusion problem

&(s,2) Q(s,ay,w) - Q(s,a,w)
E is an enemy who chases you State S voi
is a stationary collectible :
' @ ey v rey (5 — o
| 25 @&
. is a stationary immovable wall Description Q. T
e
J S
’Uzi

Narasimhan et. al., JAIR 2018

Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

Fusion problem

¢(S, Z) Q(s!a1 ,W) o Q(S,am,W)
E is an enemy who chases you State S voi
is a stationary collectible :
IE‘ is a randomly moving enemy BOW/LSTM .
| 24 @
. is a stationary immovable wall Description . T
S
vzi

Grounded language learning
Helps to ground the meaning of text to the dynamics, transitions, and rewards
Language helps in multi-task learning and transfer learning

Narasimhan et. al., JAIR 2018

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

The natural resources available where a population
settles affects its ability to produce food and goods.
Build your city on a plains or grassland square with
a river running through it if possible.

ok

INeWSYork

Figure 1: An excerpt from the user manual of the game
Civilization II.

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

The natural resources available where a population
settles affects its ability to produce food and goods.
Build your city on a plains or grassland square with
a river running through it if possible.

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

Map tile attributes:
.) - Terrain type (e.g. grassland, mountain, etc)
The natural resources available where a population - Tile resources (e.g. wheat, coal, wildlife, etc)

settles affects its ability to produce food and goods. City attributes:

; ; : . - City population
Build your city on a plains or grassland square with _ Bmotint of o8 prodiced

a river running through it if possible. Unit attributes:
- Unit type (e.g., worker, explorer, archer, etc)
- Is unitin a city ?

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

The natural resources available where a population

a river running through it if possib

1. Choose relevant sentences

settles affects its ability to pgaduce.foad and goods.
Build your city on a plains o square with
e.

Map tile attributesa
- Terrain type (e. puntain, etc)
- Tile resources (&Tg=wirear=coar, wildlife, etc)
City attributes:
- City population
- Amount of food produced
Unit attributes:
- Unit type (e.g., worker, explorer, archer, etc)
- Is unitin a city ?

2. Label words into action-description, state-description, or background

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

Map tile attributes:
. . - Terrain type (e.g. grassland, mountain, etc)
The natural resources available where a population - Tile resources (e.g. wheat, coal, wildlife, etc)

settles affects its ability to produce food and goods. City attributes:

; ; : . - City population
Build your city on a plains or grassland square with _ Bmotint of o8 prodiced

a river running through it if possible. Unit attributes:
- Unit type (e.g., worker, explorer, archer, etc)
- Is unitin a city ?

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

Q(s,a,w)

Input layer: Z(s, a,d) L Deterministic feature
layer: f(s,a,d,y;,zj) T
l f <_Output layer /\/\
7 w
\ Hidden layer encoding

sentence relevance T
S

I Hidden layer encoding
/;_ . .

Branavan et. al., JAIR 2012

predicate labeling

» ——P

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

e Phalanxes are twice as effective at defending cities as warriors. /
e Build the city on plains or grassland with a river running through it. /
e You can rename the city if you like, but we'll refer to it as washington. Relevant sentences

e There are many different strategies dictating the order in which
advances are researched

e After the road is built, use the settlers to start improving the terrain.
5

S S A A A A A
e When the settlers becomes active, chose build road. A action—description
s s 5 AL A A S: state-description
) Uie settlers or engineers to improve a terrain square within ﬂe C|_ty radius
A S¥ A A S AX S Si 5 s

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

Method % Win | % Loss | Std. Err.
Random 0 100 —
Built-in Al 0 0 —
Game only 17.3 53 £ 2.7
Sentence relevance | 46.7 2.8 + 3.5
Full model 53.7 59 + 3.5
Random text 40.3 4.3 + 34
Latent variable 26.1 3.7 + 3.1

Grounded language learning
Ground the meaning of text to the dynamics, transitions, and rewards
Language helps in learning

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

o 1.5
O
C
©
5
0

o 1_m ol
£ o 2
= | 22| |5
v 8ru “— ©

w E o <
305_4-"5 EE
@y e > O ® G
() = o O o
o
)
)
I_ O Pt % 4 I ___J ¢ ¢t ___ | __ A _ 941 1 _ ¥ _F __ & 3 __ 1 __1_ __1I

20 40 60 80
Game step

Language is most important at the start when you don’t have a good policy
Afterwards, the model relies on game features

Branavan et. al., JAIR 2012

Language for structuring policies

e Composing modules for Embodied QA

Q: What color is the sofa
in the living room?

%9

9o LB 1 S p) .8~ J3
Ltgg- t/ffo\-"-n/ttt\o-"-»t;»?tfo\-"-» Grey

LN D O WG

Exit-room Find-room|[living] Find-object[sofa] Answer

Das et. al., CoRL 2018

Language for structuring policies

e Composing modules for Embodied QA

mmm find object
m find room
B exit room

75 100 125
Action steps from target

Das et. al., CoRL 2018

Summary of RL methods

» Value Based

Value iteration
Policy iteration

(Deep) Q-learning . |mplicit policy (e.g. e-greedy)

Learned Value Function

+ Policy Based Value Function Policy

Policy gradients . No Value Function
Learned Policy Act
Value-Based i Policy-Based
Critic
» Actor-Critic
Actor (polic :

Critic (Q(F-)valu);)s) - Learned Value Function

Learned Policy

Summary of applications

Stochastic optimization

sentences LM

Sample|z’,--- ,z" |from|q,(z) and estimate

VoEqs2)[f(2)] = % Z f(zX)V 4 log g (2¥)
k

disc reward

General reward functions

ha = ¢o(0, h] hs = go(ws, h
hy 2 = ¢o(0, h1) R 3 = 9o (w3, ha) [wf wi]

h g 3. g
po(w|0, hy) v po(w|wg, ha) o S B e ol
o

Text generation

<. True data: ©-0-©-0-0 !

*9

Real World

| 0000 1,

. 00000 .

G Generate: ©-0-0-0-0 .
— 00000 .

MC
search D
Reward
Reward
Reward
Reward

Policy Gradient

Summary of applications

Instruction following Language as domain knowledge

Train

Go to the short red torch
Go to the blue keycard

L .
®7] is an enemy who chases you

is a stationary collectible

Go to the largest yellow object
Go to the green object

TP

Test
Go to the tall green torch by & randomiy moving enemy
Go to the green torch Go to the smalln Bl objct Il 5 swsionary immovable wall
Language for rewards Language to structure policies

Q: What color is the sofa
in the living room?

S

1"91 l"yz "93
Lbﬁ?fﬁf.-lLbffff.-ILfi¢#ff.-IL Grey

(W fc Pt R i

Exit-room Find-room[living] Find-object[sofa] Answer

[
[

‘Jump over the skull
while going to the left”

;.:}.x
E 7

