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Connecting Language to Actions
An MMML choose your own adventure game



Why?
Language that affects the world

Remove the cream from the middle of the Oreo…

HERB (Siddhartha Srinivasa)

Access to Broader Semantics
What’s it like to drive a bus?

How many hours of watching to achieve same level of performance 

as 30m of practice?

https://www.youtube.com/watch?v=SqGdH8lWvbA



What does interaction mean?

Reinforcement Learning: Crash Course AI#9 
https://www.youtube.com/watch?v=nIgIv4IfJ6s

Grid World? Graph Navigation? Manipulation?

Anderson 2018

Paxton 2019

1. How does the agent move?

2. How many arms or legs does it have?

3. How many fingers (if any) do the grippers have?

4. How many joints do the limbs have?

5. What about physics? Real motor noise? 

…



Every Dimension Interacts
Language

Vision

Action

Goal

1. How rich or abstract is the language?

2. How complex is the visual field?

3. Is the vision 2D, 3D, Lidar, … ?

4. What kind of supervision do you have? 

…

VQA

GQA

VCR VizWiz
EpicKitchens

YouCook2

Figure 3: Human Participants’ first-person view from pose
of the simulated robot (blue circle) at the easel (’E’) in the
map. MARCO experienced the view as the text token list:

[(Cement, Easel, Cement, Butterfly, Wood, Butterfly),
(Wall, Empty, Wall, Butterfly, Wood, Butterfly),
(Cement, Empty, Wall, End, Wall, End)]

person perspective as the followers; and (4) MARCO can
navigate the same environments as people.

Each of the three large-scale spaces used had forty loca-
tions, seven long paths with distinct textured flooring, seven
to twelve short paths with a common cement floor, and nu-
merous visual and structural features. Each environment
contained seven named locations that were the start and end
points of the routes that the directors were asked to describe.
The layouts are difficult for people to learn and navigate, so
they provide challenges for both the directors and follow-
ers. Figure 3 shows an example human view of the environ-
ment (Top) and the textual view of the simulator MARCO
sees (Bottom). Figure 4 shows the overhead layout map (not
seen by participants) of this environment, with the follower’s
movement trace marked.

The director’s task in each environment is split into three
phases. In the first phase, a director freely explores the en-
vironment. Second, the director is quizzed for navigation
competency in the environment. Once able to pass the com-
petency test by navigating efficiently among the named loca-
tions, the director is queried for directions between all pairs
of named places in the environment. For each route, the di-
rector types a set of instructions, then navigates to the goal,
and then self-rates his(her) belief that (s)he has reached the
goal and the quality of his(her) own instructions.

To gauge the quality of the route instructions, another
group of people evaluated the route instructions. Thirty-
six participants (15 female, 21 male) read the route instruc-
tions and attempted to follow the routes described in the vir-
tual environments. While navigating, the follower could re-
examine the route instructions by pressing a key, which cov-
ered the navigation screen with a pop-up window showing
the instruction text. Each route instruction text was evalu-
ated independently by six people. The destination positions
were not marked in the environments; the followers had to
explicitly end the navigation and indicate whether they be-
lieved they had reached the described goal.

Figure 4: Bottom: Map of one of three virtual environments
(not seen by participants). Three regions share a wall hang-
ing of a fish, butterfly, or Eiffel Tower. Each long hallway
has a unique flooring. Letters above mark objects (e.g. ’C’
is a chair), numbers indicate named positions.

Route Instruction Corpus Statistics
For some routes, the director either did not enter any text or
only entered a comment, e.g. “I don’t know.” For this evalu-
ation of MARCO, we omit training routes, duplicated routes,
and the empty route descriptions, leaving 682 route instruc-
tion texts that MARCO and people followed. The route in-
structions had a mean of 34.5 words from a lexicon of 587
words and, as modeled, had means of 4.7 context frames and
5.1 compound action specifications.

The six directors in this study vary significantly in writ-
ing style as a group and across different route instructions.
Across directors, style varies significantly in length of the
instructions (m=36.4, sd=16.5 words), size of the lexicon
used (m=213, sd=55 words), number of frames used (m=5.0,
sd=2.0 frames), efficiency of the routes (m=55, sd=21 per-
centage points), human success rate (m=63, sd=19 percent-
age points), and human subjective rating (m=4.0, sd=1.0 of
1–6 scale).

Route Instruction Situated Testbed
To test how well an agent (either human or MARCO) follows
route instructions, we gave the agent a route instruction text,
placed it at the starting location, monitored how it navigates
through the environment, and observed whether it reaches
and identifies the destination. We performed this experiment
with people navigating computer-rendered VRML models
of the three indoor environments. We provided the same in-
struction texts to a software agent, MARCO, which navigated
through symbolic representations of the same environments.
MARCO’s input was from the hand-verified ’gold-standard’
parse treebank, not the parser, but all other modeling was
done autonomously.

In these experiments, MARCO perceives the world as an
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Mobile Robot Planning to Seek Help with Spatially-Situated Tasks

Stephanie Rosenthal and Manuela Veloso
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Abstract
Indoor autonomous mobile service robots can overcome
their hardware and potential algorithmic limitations by
asking humans for help. In this work, we focus on
mobile robots that need human assistance at specific
spatially-situated locations (e.g., to push buttons in an
elevator or to make coffee in the kitchen). We address
the problem of what the robot should do when there are
no humans present at such help locations. As the robots
are mobile, we argue that they should plan to proac-
tively seek help and travel to offices or occupied loca-
tions to bring people to the help locations. Such plan-
ning involves many trade-offs, including the wait time
at the help location before seeking help, and the time
and potential interruption to find and displace some-
one in an office. In order to choose appropriate parame-
ters to represent such decisions, we first conduct a sur-
vey to understand potential helpers’ travel preferences
in terms of distance, interruptibility, and frequency of
providing help. We then use these results to contribute
a decision-theoretic algorithm to evaluate the possible
choices in offices and plan where to proactively seek
help. We demonstrate that our algorithm aims to mini-
mize the number of office interruptions as well as task
completion time.

Introduction
Mobile robots have the ability to perform a variety of tasks
for us today including giving visitors directions in malls
(Shiomi et al. 2008) and tours in museums (Nourbakhsh
et al. 2005), and acting as companions for individual users
(Rosenthal, Biswas, and Veloso 2010). However, robots are
limited by their sensing and actuation capabilities and state-
action policies. While it is sometimes possible for robots to
overcome their limitations through learning better policies
(Argall et al. 2009) or asking for human help to reduce un-
certainty (Fong, Thorpe, and Baur 2003; Nicolescu 2003;
Rosenthal, Biswas, and Veloso 2010) or to take control
(Shiomi et al. 2008), neither an autonomous nor human-
controlled robot with actuation limitations could ever per-
form their limited actions without new hardware. A robot
without manipulators will never be able to pick up objects,
and a robot without legs will never be able to walk up stairs.

Copyright c� 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Our CoBot robots are capable of autonomous lo-
calization and navigation, but cannot manipulate objects.

If tasks require these actions, we argue that robots should
plan to complete the task by seeking help a human in the
environment (Rosenthal, Veloso, and Dey 2012).

Our CoBot robots (Figure 1), for example, are capable of
autonomous localization and navigation (Biswas and Veloso
2010) and can perform tasks such as delivering messages to
building occupants and transporting objects from one loca-
tion to another. However, they do not have manipulators to
be able to pick up objects or push elevator buttons to travel
between floors of our building. In order to overcome their
limitations, we have them plan to request help from people
in the physical environment in order to complete their tasks.

We address the problem of determining where robots can
proactively find people to help them with their tasks. Many
of the actions that our CoBots need help with are spatially-
situated actions - those that must be performed in a partic-
ular location or set of locations in the environment (e.g., at
the elevator or in the kitchen). People in the environment
visit these locations at different frequencies. When they are
there, the potential cost of helping the robot is low. How-
ever, the robot may have to wait a long period of time for
someone to arrive. Alternatively, we propose that because
the robot is mobile, it could travel to offices in our build-
ing to find immediate help at the higher cost of interrupting
the office worker. Identifying an optimal help policy hinges
on evaluating this tradeoff between interruption costs to the
people in the environment and task completion time.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence
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Choose your own adventure



Sequential and Online Modeling

3D 
Conv “Action Summary”

Action Recognition

Embodied

??

ActionAction
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Requirement: Have a goal



What is a “goal”?
“Put the green dog on the table”
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Planning
Pre- and Post-Conditions

Instances of “green dog sculpture on table”

Task 1: Recognize Success Task 2: Must hold object, 
to place object

Task 3: Must move to object, 
to hold object

Task 4: Must locate object, 
to move to object

So what are we actually optimizing? What’s our actual goal?



Let’s Start Simple



Instruction Following
Explicit Action Supervision

Walk out of the bedroom through the open door into the hallway

Turn the corner and walk into the dining area.

Pass the dining table and walk into the living room area towards the television.

Stop near the chair and open sliding doors to outside



V+L -> A

Does this actually need vision?

Turn left

LEFT

and go straight

FWD

Does this understand plans?
No, this is ~Semantic Parsing



V+L -> A

Does this actually need vision?

Walk out of the bedroom through the open door into the hallway

LEFT FWD

Yes

Maybe, probably notDoes this understand plans?



First Major Question: Alignment
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I think
I am here

Textual grounding

Visual grounding

Progress monitoring

Self-
monitoring

History info
Which words are completed?
Which words are for next action?
Which direction matches words?

Exit the bedroom and go towards the table. Go to the 
stairs on the left of  the couch. Wait on the third step.

Action: Go to the stairs 

Figure 1: Vision-and-Language Navigation task and our proposed self-monitoring agent. The agent
is constantly aware of what was completed, what is next, and where to go, as it navigates through
unknown environments by following navigational instructions.

boundary, in order to determine when to transit and to follow the instruction correctly the agent
is required to keep track of both grounded instructions. On the other hand, assessing the progress
made towards the goal has indeed been shown to be important for goal-directed tasks in humans
decision-making (Benn et al., 2014; Chatham et al., 2012; Berkman & Lieberman, 2009). While a
number of approaches have been proposed for VLN (Anderson et al., 2018b; Wang et al., 2018b;
Fried et al., 2018), previous approaches generally are not aware of which instruction is next nor
progress towards the goal; indeed, we qualitatively show that even the attentional mechanism of the
baseline does not successfully track this information through time.

In this paper, we propose an agent endowed with the following abilities: (1) identify which direc-
tion to go by finding the part of the instruction that corresponds to the observed images—visual
grounding, (2) identify which part of the instruction has been completed or ongoing and which
part is potentially needed for the next action selection—textual grounding, and (3) ensure that the
grounded instruction can correctly be used to estimate the progress made towards the goal, and ap-
ply regularization to ensure this —progress monitoring. Therefore, we introduce the self-monitoring
agent consisting of two complementary modules: visual-textual co-grounding and progress monitor.

More specifically, we achieve both visual and textual grounding simultaneously by incorporating
the full history of grounded instruction, observed images, and selected actions into the agent. We
leverage the structural bias between the words in instructions used for action selection and progress
made towards the goal and propose a new objective function for the agent to measure how well it
can estimate the completeness of instruction-following. We then demonstrate that by conditioning
on the positions and weights of grounded instruction as input, the agent can be self-monitoring of
its progress and further ensure that the textual grounding accurately reflects the progress made.

Overall, we propose a novel self-monitoring agent for VLN and make the following contributions:
(1) We introduce the visual-textual co-grounding module, which performs grounding interdepen-
dently across both visual and textual modalities. We show that it can outperform the baseline method
by a large margin. (2) We propose to equip the self-monitoring agent with a progress monitor, and
for navigation tasks involving instructions instantiate this by introducing a new objective function
for training. We demonstrate that, unlike the baseline method, the position of grounded instruction
can follow both past and future instructions, thereby tracking progress to the goal. (3) With the pro-
posed self-monitoring agent, we set the new state-of-the-art performance on both seen and unseen
environments on the standard benchmark. With 8% absolute improvement in success rate on the
unseen test set, we are ranked #1 on the challenge leaderboard.

2 SELF-MONITORING NAVIGATION AGENT

2.1 NOTATION

Given a natural language instruction with L words, its representation is denoted by X =�
x1,x2, . . . ,xL

 
, where xl is the feature vector for the l-th word encoded by an LSTM language

encoder. Following Fried et al. (2018), we enable the agent with panoramic view. At each time
step, the agent perceives a set of images at each viewpoint vt =

�
vt,1,vt,2, ...,vt,K

 
, where K

2

Ma et al, “Self-Monitoring Navigation Agent via Auxiliary Progress Estimation” ICLR 2019



Alignment
Exit the bedroom and go towards the table. Go to the stairs on the left of the couch. Wait on the third step.
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made towards the goal has indeed been shown to be important for goal-directed tasks in humans
decision-making (Benn et al., 2014; Chatham et al., 2012; Berkman & Lieberman, 2009). While a
number of approaches have been proposed for VLN (Anderson et al., 2018b; Wang et al., 2018b;
Fried et al., 2018), previous approaches generally are not aware of which instruction is next nor
progress towards the goal; indeed, we qualitatively show that even the attentional mechanism of the
baseline does not successfully track this information through time.

In this paper, we propose an agent endowed with the following abilities: (1) identify which direc-
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part is potentially needed for the next action selection—textual grounding, and (3) ensure that the
grounded instruction can correctly be used to estimate the progress made towards the goal, and ap-
ply regularization to ensure this —progress monitoring. Therefore, we introduce the self-monitoring
agent consisting of two complementary modules: visual-textual co-grounding and progress monitor.

More specifically, we achieve both visual and textual grounding simultaneously by incorporating
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made towards the goal and propose a new objective function for the agent to measure how well it
can estimate the completeness of instruction-following. We then demonstrate that by conditioning
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Overall, we propose a novel self-monitoring agent for VLN and make the following contributions:
(1) We introduce the visual-textual co-grounding module, which performs grounding interdepen-
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environments on the standard benchmark. With 8% absolute improvement in success rate on the
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Exit the bedroom and go towards the
table. Go to the stairs on the left of the
couch. Wait on the third step.
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Figure 2: Proposed self-monitoring agent consisting of visual-textual co-grounding, progress mon-
itoring, and action selection modules. Textual grounding: identify which part of the instruction has
been completed or ongoing and which part is potentially needed for next action. Visual grounding:
summarize the observed surrounding images. Progress monitor: regularize and ensure grounded
instruction reflects progress towards the goal. Action selection: identify which direction to go.

is the maximum number of navigable directions1, and vt,k represents the image feature of direc-
tion k. The co-grounding feature of instruction and image are denoted as x̂t and v̂t respectively.
The selected action is denoted as at. The learnable weights are denoted with W , with appropriate
sub/super-scripts as necessary. We omit the bias term b to avoid notational clutter in the exposition.

2.2 VISUAL AND TEXTUAL CO-GROUNDING

First, we propose a visual and textual co-grounding model for the vision and language navigation
task, as illustrated in Fig. 2. We model the agent with a sequence-to-sequence architecture with
attention by using a recurrent neural network. More specifically, we use Long Short Term Memory
(LSTM) to carry the flow of information effectively. At each step t, the decoder observes representa-
tions of the current attended panoramic image feature v̂t, previous selected action at�1 and current
grounded instruction feature x̂t as input, and outputs an encoder context ht:

ht = LSTM([x̂t, v̂t,at�1]) (1)

where [, ] denotes concatenation. The previous encoder context ht�1 is used to obtain the textual
grounding feature x̂t and visual grounding feature v̂t, whereas we use current encoder context ht to
obtain next action at, all of which will be illustrated in the rest of the section.

Textual grounding. When the agent moves from one viewpoint to another, it is required to identify
which direction to go by relying on a grounded instruction, i.e. which parts of the instruction should
be used. This can either be the instruction matched with the past (ongoing action) or predicted for
the future (next action). To capture the relative position between words within an instruction, we
incorporate the positional encoding PE(·) (Vaswani et al., 2017) into the instruction features. We
then perform soft-attention on the instruction features X , as shown on the left side of Fig. 2. The
attention distribution over L words of the instructions is computed as:

ztextual
t,l = (Wxht�1)

>PE(xl), and ↵t = softmax(ztextual
t ), (2)

where Wx are parameters to be learnt. ztextual
t,l is a scalar value computed as the correlation between

word l of the instruction and previous hidden state ht�1, and ↵t is the attention weight over features
in X at time t. Based on the textual attention distribution, the grounded textual feature x̂t can be
obtained by the weighted sum over the textual features x̂t = ↵T

t X .
1Empirically, we found that using only the images on navigable directions to be slightly better than using

all 36 surrounding images (12 headings ⇥ 3 elevations with 30 degree intervals).
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Figure 3: The positions and weights of grounded instructions as agents navigate by following
instructions. Our self-monitoring agent with progress monitor demonstrates the grounded instruction
used for action selection shifts gradually from the beginning of instructions towards the end. This is
not true of the baseline method.

position and the goal location. (2) Success Rate (SR), the percentage of final positions less than 3m
away from the goal location. (3) Oracle Success Rate (OSR), the success rate if the agent can stop at
the closest point to the goal along its trajectory. In addition, we also include the recently introduced
Success rate weighted by (normalized inverse) Path Length (SPL) (Anderson et al., 2018a), which
trades-off Success Rate against trajectory length.

3.1 COMPARISON WITH PRIOR ART

We first compare the proposed self-monitoring agent with existing approaches. As shown in Table 1,
our method achieves significant performance improvement compared to the state of the arts without
data augmentation. We achieve 70% SR on the seen environment and 57% on the unseen environ-
ment while the existing best performing method achieved 63% and 50% SR respectively. When
trained with synthetic data5, our approach achieves slightly better performance on the seen environ-
ments and significantly better performance on both the validation unseen environments and the test
unseen environments when submitted to the test server. We achieve 3% and 8% improvement on SR
on both validation and test unseen environments. Both results with or without data augmentation
indicate that our proposed approach is more generalizable to unseen environments. At the time of
writing, our self-monitoring agent is ranked #1 on the challenge leader-board among the state of the
arts.

Note that both Speaker-Follower and our approach in Table 1 use beam search. For comparison
without using beam search, please refer to the Appendix.

Textually grounded agent. Intuitively, an instruction-following agent is required to strongly
demonstrate the ability to correctly focus and follow the corresponding part of the instruction as
it navigates through an environment. We thus record the distribution of attention weights on instruc-
tion at each step as indications of which parts of the instruction being used for action selection. We
average all runs across both validation seen and unseen dataset splits. Ideally, we expect to see the
distribution of attention weights lies close to a diagonal, where at the beginning, the agent focuses
on the beginning of the instruction and shifts its attention towards the end of instruction as it moves
closer to the goal.

To demonstrate, we use the method with panoramic action space proposed in Fried et al. (2018) as
a baseline for comparison. As shown in Figure 3, our self-monitoring agent with progress monitor
demonstrates that the positions of grounded instruction over time form a line similar to a diagonal.
This result may further indicate that the agent successfully utilizes the attention on instruction to
complete the task sequentially. We can also see that both agents were able to focus on the first
part of the instruction at the beginning of navigation consistently. However, as the agent moves
further in unknown environments, our self-monitoring agent can still successfully identify the parts
of instruction that are potentially useful for action selection, whereas the baseline approach becomes
uncertain about which part of the instruction should be used for selecting an action.

5We use the exact same synthetic data generated from the Speaker as in Fried et al. (2018) for comparison.
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1. Did I reach the target?
2. Am I lost? 
3. Should I backtrack?
4. Where to backtrack to?
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A lot of the visual observations and actions 
have no correspondence to the language



Underspecification

Does this actually need vision?

Leave the bedroom

LEFT FWD

Yes

Maybe?Does this understand plans?



Why does this question matter?
Because in general, we can’t supervise everything

Hey Siri, remind me to do my laundry

remind at home

if(detergent)

remind to buy detergent when at store

else

Hey Siri-bot, do my laundry

Go to hamper…



ALFRED
Action Learning From Realistic Environments and Directives



Seven High-level Tasks
Paths are generated by planner

Pick & Place Double Place Stack Examine

Heat Cool Rinse



Data collection
(Stack, Fork, Cup, CounterTop, Kitchen3)

(x,y,z) | is_fork(x) ^ is_cup(y) ^ on(x, y) ^ is_counter(z) ^ on(y, z)

Tuple

Planner

Sample

Execute

Annotate
Language

LanguageLanguage
Language

LanguageLanguage
Language

LanguageLanguage



Example Language



Action Space

• Masks for object interaction

- Discrete actions (no torques)

Put In

Toggle

Wash the cup



"Place a heated apple slice on the large table"

create_slice(apple) heat(apple_slice) place(apple_slice, table)

collect(knife) locate(apple) slice(apple)

…



End-to-End Models

Turn around and move to the stove, 
then turn left to face the counter to the 
left of the stove. Pick up the sharp knife 
with the yellow handle from the counter…

LSTM

PickupObject
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Action: Go to the stairs 

Figure 1: Vision-and-Language Navigation task and our proposed self-monitoring agent. The agent
is constantly aware of what was completed, what is next, and where to go, as it navigates through
unknown environments by following navigational instructions.

boundary, in order to determine when to transit and to follow the instruction correctly the agent
is required to keep track of both grounded instructions. On the other hand, assessing the progress
made towards the goal has indeed been shown to be important for goal-directed tasks in humans
decision-making (Benn et al., 2014; Chatham et al., 2012; Berkman & Lieberman, 2009). While a
number of approaches have been proposed for VLN (Anderson et al., 2018b; Wang et al., 2018b;
Fried et al., 2018), previous approaches generally are not aware of which instruction is next nor
progress towards the goal; indeed, we qualitatively show that even the attentional mechanism of the
baseline does not successfully track this information through time.

In this paper, we propose an agent endowed with the following abilities: (1) identify which direc-
tion to go by finding the part of the instruction that corresponds to the observed images—visual
grounding, (2) identify which part of the instruction has been completed or ongoing and which
part is potentially needed for the next action selection—textual grounding, and (3) ensure that the
grounded instruction can correctly be used to estimate the progress made towards the goal, and ap-
ply regularization to ensure this —progress monitoring. Therefore, we introduce the self-monitoring
agent consisting of two complementary modules: visual-textual co-grounding and progress monitor.

More specifically, we achieve both visual and textual grounding simultaneously by incorporating
the full history of grounded instruction, observed images, and selected actions into the agent. We
leverage the structural bias between the words in instructions used for action selection and progress
made towards the goal and propose a new objective function for the agent to measure how well it
can estimate the completeness of instruction-following. We then demonstrate that by conditioning
on the positions and weights of grounded instruction as input, the agent can be self-monitoring of
its progress and further ensure that the textual grounding accurately reflects the progress made.

Overall, we propose a novel self-monitoring agent for VLN and make the following contributions:
(1) We introduce the visual-textual co-grounding module, which performs grounding interdepen-
dently across both visual and textual modalities. We show that it can outperform the baseline method
by a large margin. (2) We propose to equip the self-monitoring agent with a progress monitor, and
for navigation tasks involving instructions instantiate this by introducing a new objective function
for training. We demonstrate that, unlike the baseline method, the position of grounded instruction
can follow both past and future instructions, thereby tracking progress to the goal. (3) With the pro-
posed self-monitoring agent, we set the new state-of-the-art performance on both seen and unseen
environments on the standard benchmark. With 8% absolute improvement in success rate on the
unseen test set, we are ranked #1 on the challenge leaderboard.

2 SELF-MONITORING NAVIGATION AGENT

2.1 NOTATION

Given a natural language instruction with L words, its representation is denoted by X =�
x1,x2, . . . ,xL

 
, where xl is the feature vector for the l-th word encoded by an LSTM language

encoder. Following Fried et al. (2018), we enable the agent with panoramic view. At each time
step, the agent perceives a set of images at each viewpoint vt =
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for navigation tasks involving instructions instantiate this by introducing a new objective function
for training. We demonstrate that, unlike the baseline method, the position of grounded instruction
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Pick-up
What’s hidden in that?

Figure 2. Visualization of the predicted grasps for the mug. (middle) All the grasps that are generated by our method. (right) Grasps that
are both kinematically feasible and collision free color-coded by the predicted scores. Green is the highest and red is the lowest.

• To improve the precision of the VAE samples, we in-
troduce a grasp evaluator network that maps a point
cloud of the observed object and the robot gripper to a
quality assessment of the 6D gripper pose. Crucially,
we show that the gradient of this network can be used
to improve grasp samples, for instance moving grip-
per out of collision or ensuring that the gripper is well
aligned with the object.

• We demonstrate that our approach outperforms previ-
ous approaches and enables a robot to pickup 17 ob-
jects with a success rate of 88%. Generating diverse
grasps is quite important because not all the grasps are
kinematically feasible for the robot to execute. We fur-
thermore show that our approach generates diverse sets
of grasp samples while maintaining high success rate.

The paper is organized as follows. We first contrast re-
lated approaches to grasping that use deep learning, and
then explain the different components of our approach:
grasp sampling, evaluation, and refinement. Finally, we
evaluate our method on a real robotic platform and show
the effect of different hyperparameters in various ablation
studies.

2. Related Work

Learning 6-DOF Grasps The prevailing approaches to
solve the robot grasping problem are data-driven [2]. While
earlier methods were based on hand-crafted feature vec-
tors [27, 1, 7], recent methods exploit convolutional archi-
tectures to operate on raw visual measurements [13, 25, 21,
19, 14]. Most of these grasp synthesis approaches are en-
abled by representing the grasp as an oriented rectangle in
the image [8]. This 3-DOF representation constrains the
gripper pose to be parallel to the image plane. The draw-
backs of such a representation are manifold: Since it limits
the grasp diversity, picking up an object might be impossi-
ble given additional constraints imposed by the arm or task.
In case of a static image sensor it also leads to a severely
restricted workspace [19].

Our approach tackles the problem of predicting the full
6-DOF pregrasp pose. This is challenging due to occluded

object parts that affect grasp success. Yan et al. [35] circum-
vent this problem by including the auxiliary task of recon-
structing the geometry of the target object. The main task
of predicting the 6-DOF grasp outcome can then use local
geometry that is not part of the measurement. Similar to our
evaluator network, Zhou et al. [37] learn a grasp score func-
tion which they also use for grasp refinement. In contrast
to our approach, both methods [35, 37] are only evaluated
in simulation. Similar to our grasp refinement phase, Lu et
al. [17] use the gradient of a learned grasp success model to
infer the maximum likelihood grasp estimate.

Few methods formulate the problem as a regression to
a single best grasp pose [28, 16]. They inherently lack the
ability to predict a diverse distribution of possible grasps.
Choi et al. [4] classify 24 pre-defined orientations to chose
a 6-DOF pre-grasp pose. Such a coarse resolution of
SO(3) will necessarily lead to a limited diversity of the
predicted grasps. In contrast, the grasp point detection
method (GPD) [31, 15] uses a more dense sampling of can-
didate grasps: A point in the observed point cloud is sam-
pled randomly and a Darboux frame is constructed which
is aligned with the estimated surface normal and the local
direction of the principal curvature. Although this heuristic
creates a quite diverse set of candidate grasps, it fails gen-
erating grasps along thin structures such as rims of mugs,
plates, or bowls since estimating those surface normals from
noisy measurements is challenging. Our learned grasp sam-
pler does not suffer from such bias. As a result our proposed
method finds grasps where GPD is not able to (see Sec. 4.2).

Apart from using supervised learning, grasping has also
been formulated as a reinforcement learning problem [9, 36]
or approximations of it [14]. The learned grasp policies are
more expressive than describing only the final grasp pose.
Still, the action space of these methods is usually se(2),
limiting the diversity to top-down grasps.

Deep Neural Networks for Learning from 3D Data The
success of deep learning on 3D point cloud data started
much later than its huge success on RGB images. In the
early days, 3D data were represented as 3D voxels [20] or
as extracting features from 2.5 depth images [6] and pro-

Does “pick up” mean the same thing for all of these?

Does “pick up” correspond to a specific action sequence?Figure 2. Visualization of the predicted grasps for the mug. (middle) All the grasps that are generated by our method. (right) Grasps that
are both kinematically feasible and collision free color-coded by the predicted scores. Green is the highest and red is the lowest.

• To improve the precision of the VAE samples, we in-
troduce a grasp evaluator network that maps a point
cloud of the observed object and the robot gripper to a
quality assessment of the 6D gripper pose. Crucially,
we show that the gradient of this network can be used
to improve grasp samples, for instance moving grip-
per out of collision or ensuring that the gripper is well
aligned with the object.

• We demonstrate that our approach outperforms previ-
ous approaches and enables a robot to pickup 17 ob-
jects with a success rate of 88%. Generating diverse
grasps is quite important because not all the grasps are
kinematically feasible for the robot to execute. We fur-
thermore show that our approach generates diverse sets
of grasp samples while maintaining high success rate.

The paper is organized as follows. We first contrast re-
lated approaches to grasping that use deep learning, and
then explain the different components of our approach:
grasp sampling, evaluation, and refinement. Finally, we
evaluate our method on a real robotic platform and show
the effect of different hyperparameters in various ablation
studies.

2. Related Work

Learning 6-DOF Grasps The prevailing approaches to
solve the robot grasping problem are data-driven [2]. While
earlier methods were based on hand-crafted feature vec-
tors [27, 1, 7], recent methods exploit convolutional archi-
tectures to operate on raw visual measurements [13, 25, 21,
19, 14]. Most of these grasp synthesis approaches are en-
abled by representing the grasp as an oriented rectangle in
the image [8]. This 3-DOF representation constrains the
gripper pose to be parallel to the image plane. The draw-
backs of such a representation are manifold: Since it limits
the grasp diversity, picking up an object might be impossi-
ble given additional constraints imposed by the arm or task.
In case of a static image sensor it also leads to a severely
restricted workspace [19].

Our approach tackles the problem of predicting the full
6-DOF pregrasp pose. This is challenging due to occluded

object parts that affect grasp success. Yan et al. [35] circum-
vent this problem by including the auxiliary task of recon-
structing the geometry of the target object. The main task
of predicting the 6-DOF grasp outcome can then use local
geometry that is not part of the measurement. Similar to our
evaluator network, Zhou et al. [37] learn a grasp score func-
tion which they also use for grasp refinement. In contrast
to our approach, both methods [35, 37] are only evaluated
in simulation. Similar to our grasp refinement phase, Lu et
al. [17] use the gradient of a learned grasp success model to
infer the maximum likelihood grasp estimate.

Few methods formulate the problem as a regression to
a single best grasp pose [28, 16]. They inherently lack the
ability to predict a diverse distribution of possible grasps.
Choi et al. [4] classify 24 pre-defined orientations to chose
a 6-DOF pre-grasp pose. Such a coarse resolution of
SO(3) will necessarily lead to a limited diversity of the
predicted grasps. In contrast, the grasp point detection
method (GPD) [31, 15] uses a more dense sampling of can-
didate grasps: A point in the observed point cloud is sam-
pled randomly and a Darboux frame is constructed which
is aligned with the estimated surface normal and the local
direction of the principal curvature. Although this heuristic
creates a quite diverse set of candidate grasps, it fails gen-
erating grasps along thin structures such as rims of mugs,
plates, or bowls since estimating those surface normals from
noisy measurements is challenging. Our learned grasp sam-
pler does not suffer from such bias. As a result our proposed
method finds grasps where GPD is not able to (see Sec. 4.2).

Apart from using supervised learning, grasping has also
been formulated as a reinforcement learning problem [9, 36]
or approximations of it [14]. The learned grasp policies are
more expressive than describing only the final grasp pose.
Still, the action space of these methods is usually se(2),
limiting the diversity to top-down grasps.

Deep Neural Networks for Learning from 3D Data The
success of deep learning on 3D point cloud data started
much later than its huge success on RGB images. In the
early days, 3D data were represented as 3D voxels [20] or
as extracting features from 2.5 depth images [6] and pro-
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Simplify with Blocks and Coordinates

Put the orange block to the right of the green block

Why?

(“Put the orange block to right of the green block”,

0.35)

Is this a useful training datum?

We no longer have a discrete grounding
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A Shared Semantic Space

“take the yellow object from the table and place it on top of the red object”
move_to(yellow) grasp(yellow) release(yellow)…

Language

Observations
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Predicting the Future

take the yellow object from the table 
and place it on top of the red object

Goal:

Interpretable Possible Futures

Current World
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Long Tails

move the yellow cube to the right until it is on top of the green cube with the front  
half  of  the  yellow  cube  touching the far half of the top of the green cube

put the yellow one on the green block
Templates:

Humans:

Paxton et al. Prospection: Interpretable Plans From Language By Predicting the Future ICRA 2019



Where does semantics come from?

<latexit sha1_base64="I5ILJdfoFqxX6L++L9nEXlut79A=">AAACAHicbZDLSsNAFIZP6q3WW9SFCzeDRahQQiKKLotuXFawF2hDmEyn7dDJhZlJocRsfBU3LhRx62O4822ctllo6w8DH/85hzPn92POpLLtb6Owsrq2vlHcLG1t7+zumfsHTRklgtAGiXgk2j6WlLOQNhRTnLZjQXHgc9ryR7fTemtMhWRR+KAmMXUDPAhZnxGstOWZR3EFo0c09uwqsiwLVTWmKjvzzLJt2TOhZXByKEOuumd+dXsRSQIaKsKxlB3HjpWbYqEY4TQrdRNJY0xGeEA7GkMcUOmmswMydKqdHupHQr9QoZn7eyLFgZSTwNedAVZDuVibmv/VOonqX7spC+NE0ZDMF/UTjlSEpmmgHhOUKD7RgIlg+q+IDLHAROnMSjoEZ/HkZWieW86lZd9flGs3eRxFOIYTqIADV1CDO6hDAwhk8Ayv8GY8GS/Gu/Exby0Y+cwh/JHx+QPPEpP7</latexit>

p(a|v0, ..., vt)
Someone labeled it?

Simulator Definitions?

Published as a conference paper at ICLR 2019

I think
I am here

Textual grounding

Visual grounding

Progress monitoring

Self-
monitoring

History info
Which words are completed?
Which words are for next action?
Which direction matches words?

Exit the bedroom and go towards the table. Go to the 
stairs on the left of  the couch. Wait on the third step.

Action: Go to the stairs 

Figure 1: Vision-and-Language Navigation task and our proposed self-monitoring agent. The agent
is constantly aware of what was completed, what is next, and where to go, as it navigates through
unknown environments by following navigational instructions.

boundary, in order to determine when to transit and to follow the instruction correctly the agent
is required to keep track of both grounded instructions. On the other hand, assessing the progress
made towards the goal has indeed been shown to be important for goal-directed tasks in humans
decision-making (Benn et al., 2014; Chatham et al., 2012; Berkman & Lieberman, 2009). While a
number of approaches have been proposed for VLN (Anderson et al., 2018b; Wang et al., 2018b;
Fried et al., 2018), previous approaches generally are not aware of which instruction is next nor
progress towards the goal; indeed, we qualitatively show that even the attentional mechanism of the
baseline does not successfully track this information through time.

In this paper, we propose an agent endowed with the following abilities: (1) identify which direc-
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Embodiment
• Choose your own adventure — Lots of noise 

• What does it mean to succeed? 

• Where do concepts come from? 

• What’s the role of exploration? 

• Language is woefully underspecified

All of these are the “same” verb


