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Angular momentum
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1 Rotations and angular momentum

Rotations R in space are implemented on QM systems by unitary transformations,

U(R) = e−iθ
iJi/h̄, (1)

where Ji are the hermitian generators of rotation. The Ji are also the angular mo-
mentum operators, and are conserved if the Hamiltonian is invariant under rotations.
The rotation group structure implies the commutation relations,

[Ji, Jj ] = ih̄εijkJk. (2)

Special cases of these are the orbital angular momentum of a single particle, spin of
a single particle, or the total spin and orbital angular momentum of a collection of
particles.

2 Irreducible representations of the rotation group

Since [Jz, J
2] = 0,1 we can simultaneously diagonalize Jz and J2. Call the (normal-

ized) eigenstates |jm〉, where

Jz|jm〉 = m|jm〉, J2|jm〉 = j(j + 1)|jm〉, (3)

1This means that the scalar J2 is invariant under infinitesimal rotations about the z axis.
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with h̄ = 1 from now on. It can be shown that the commutation relations (2) and
hermiticity of Ji imply that the possible values of j and m are

j = 0, 1
2 , 1, 3

2 , 2, . . . , m = j, j − 1, j − 2, . . . ,−j. (4)

Although |jm〉 is not an eigenstate of Jx and Jy, the vectors Jx|jm〉 and Jy|jm〉
are linear combinations of the form a|j,m+ 1〉+ b|j,m− 1〉. The relation is neatly
expressed using J± := Jx ± iJy. Namely:

J±|jm〉 =
√
j(j + 1)−m(m± 1)|j,m± 1〉. (5)

If any rotation is applied to the state |jm〉, it therefore mixes with the other states
|jm′〉 with the same value of j. That is, the space spanned by the set of states {|jm〉}
for a fixed j is closed under rotations. One says that it carries a unitary represen-
tation of the rotation group. Moreover, no linear subspace of that space is closed
under rotations,2 and for this reason it’s called an “irreducible” representation. The
representation with a given j is called the “spin-j” representation, or “multiplet”,
and it is 2j + 1 dimensional. Note that the representation is an abstract structure,
which can be realized by many different physical or mathematical systems.

3 Addition of angular momenta

The tensor product j1 ⊗ j2 of any two representations is spanned by the product
basis, {|j1m1〉|j2m2〉}. This decomposes into irreducible representations (irreps).
To enumerate these, start with the “top” Jz state, |j1j1〉|j2j2〉, i.e. the state with
the largest possible value of Jz(= J1z + J2z), which is j1 + j2, and work down to
lower values of Jz by applying the lowering operator J−(= J1− + J2−). At each
step the result will be a linear combination of all the product states with m1 +m2

equal to a given value of the total Jz. When this process lands on the lowest
possible Jz value, here −(j1 + j2), it has filled out a spin-(j1 + j2) representation.
Next, construct the spin-(j1 + j2 − 1) representation. The “top” state is the linear
combination of the two states with Jz = j1+j2−1 that is orthogonal to the state used
already in building the spin-(j1 + j2) representation; the other states are obtained
by successively applying J−. Repeating this process until all the states are used up,
one obtains the decomposition

j1 ⊗ j2 = (j1 + j2)⊕ (j1 + j2 − 1)⊕ · · · ⊕ |j1 − j2|. (6)

One can check that the total dimension (2j1 + 1)(2j2 + 1) of j1 ⊗ j2 is equal to the
sum of 2j + 1 over the j values stepping by integers from j1 + j2 down to |j1 − j2|.

2Although I don’t now see a way to make that fact obvious, it seems intuitively reasonable, given
that J± move the states up and down the ladder, filling out the whole multiplet. This itself is not
(as far as I can see) a demonstration of irreducibility, since J± are not, by themselves, rotations.
However, a general rotation has the form exp(zJ+ − z̄J− + iθJz), where the real number θ and the
complex number z are arbitrary. It seems clear that, when z and θ vary arbitrarily, there can be
no invariant linear subspace.
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3.1 Examples

• The simplest example is the addition of two spin-1/2 systems:

1
2 ⊗

1
2 = 1⊕ 0←→ 2× 2 = 3 + 1 (7)

This is the decomposition into the spin triplet states and the spin singlet.

• For a second example, consider the p-wave electron states in an alkalai atom,
with orbital angular momentum ` = 1. These transform under the spin-1
representation, while the spin of the electron transforms under the spin-1/2
representation. The Hilbert space for these orbital and spin degrees of freedom
is the tensor product of the two, 1⊗ 1

2 , which decomposes into the sum of two
irreps,

1⊗ 1
2 = 3

2 ⊕
1
2 ←→ 3× 2 = 4 + 2 (8)

• For a third example, consider the two 2p electrons in carbon. Hund’s first
and second rules imply that in the ground state, the total spin of these is
S = 1, and the total orbital angular momentum is L = 1. The total angular
momentum of the pair is the sum of their orbital and spin angular momenta,
so the relevant addition is

1⊗ 1 = 2⊕ 1⊕ 0←→ 3× 3 = 5 + 3 + 1. (9)

Hund’s third rule tells us that in this case, the joint state has J = 0, i.e. it lies
in the singlet subspace on the right hand side.

4 Clebsch-Gordan coefficients

The identity operator on the product j1 ⊗ j2 can be expanded in {|j1m1〉|j2m2〉}
states, or in |jm〉 states:

Ij1⊗j2 =
∑

m1,m2

|m1m2〉〈m1m2| =
∑
j m

|jm〉〈jm|. (10)

Here I use the notational abbreviation |m1m2〉 := |j1m1〉|j2m2〉, suppressing the j1
and j2 labels since they are the same for all the states. Applying the identity in the
form of the first of these sums yields

|jm〉 =
∑

m1+m2=m

|m1m2〉〈m1m2|jm〉. (11)

Similarly, applying the identity in the form of the second sum in (10) yields

|m1m2〉 =
∑
j

|jm〉〈jm|m1m2〉, (12)

with m = m1 +m2 (since otherwise the inner product vanishes). The inner products
that serve as the expansion coefficients are called Clebsch-Gordan (CG) coefficients.
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The decomposition into the irreps discussed above introduces only algebraic
functions involving the square root coefficients appearing in (5). Therefore the CG
coefficients can always be taken to be real, and we have (restoring the explicit j1j2
dependence)

〈j1m1j2m2|jm〉 = 〈jm|j1m1j2m2〉∗ = 〈jm|j1m1j2m2〉. (13)

There remains a sign ambiguity, which is typically fixed by requiring that the coef-
ficient of |m1 = j1〉|m2 = j − j1〉 in the the expansion of the top state |jj〉 of the
spin-j representation is positive, i.e. 〈j1, j − j1|jj〉 > 0.

The CG coefficients are displayed in printed tables, and they can be called in
Mathematica: ClebschGordan[{j1,m1}, {j2,m2}, {j,m}]. Fundamentally, they are
obtained using the what we know about the action of the operators Jz and J±, (3)
and (5), orthogonality of the eigenvectors of hermitian operators, and normalization
of the states. In particular cases one can sometimes conveniently find them from
scratch this way. There are recursion relations for them, a projection operator
method, and, amazingly enough, a closed form formula found by Wigner. The
formula was given in a more symmetrical form by Racah, but it’s too complicated
to be usable. See (106.14) of Landau & Lifshitz, QM. ,

4.1 Example: 1⊗ 1
2
= 3

2
⊕ 1

2

Let’s think of the first factor as the orbital angular momentum and the second factor
as the spin. The states |1ml〉, for ml = 1, 0,−1, form a basis for the first factor,
and the states |12ms〉, for ms = 1

2 ,−
1
2 form a basis for the second factor. The six

states |1ml〉|12ms〉 form a basis for the tensor product 1 ⊗ 1
2 . These basis vectors

are eigenvectors of L2, Lz, S
2, and Sz. They are also eigenvectors of Jz := Lz + Sz,

with eigenvalues (ml+ms)h̄, but they are not eigenvectors of J2 = (~L+ ~S) · (~L+ ~S).
We can also find a basis of eigenvectors of J2 and Jz. The eigenvalues of J2 have

the form j(j + 1)h̄2, where jh̄ is the maximum Jz value. The possible values of j
in the present case are j = 3

2 ,
1
2 , so the full space is spanned by a basis composed of

the four vectors |32mj〉 (with mj = 3
2 ,

1
2 ,−

1
2 ,−

3
2) and the two vectors |12mj〉 (with

mj = 1
2 ,−

1
2).

Any vector from one of these bases can be expanded as a linear combination of
vectors from the other basis. For example,

|32
1
2〉 =

∑
ml,ms

Cml,ms |1ml〉|12ms〉. (14)

Conversely,
|10〉|12

1
2〉 =

∑
j,m

Dj,m|j,m〉. (15)

The coefficients Cml,ms and Dj,m are examples of Clebsch-Gordan coefficients. They
are equal to the inner products Cml,ms = 〈1ml|〈12ms|32

1
2〉 ≡ 〈1ml

1
2ms|32

1
2〉, and

Djm = 〈jm||10〉|12
1
2〉 ≡ 〈jm|101

2
1
2〉.

3 The CG coefficient table is constructed using

3The expressions after ≡ are just a notational change, which combines the labels of the factors
into one “ket”.
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the what we know about the action of the operators Jz and J±, (3) and (5), and
orthogonality of the eigenvectors of hermitian operators. Instead of using the table,
we can sometimes conveniently evaluate the coefficients directly, using these prop-
erties. For example, the left hand side of (15) is an eigenstate of Jz = Lz + Sz with
eigenvalue (0 + 1

2)h̄, so the right hand side must be as well. This implies that Djm

must vanish unless m = 1
2 . Instead of having a sum of six terms, therefore, only two

terms actually contribute:

|10〉|12
1
2〉 = α|32

1
2〉+ β|12

1
2〉 (16)

Our task thus reduces to finding just the two coefficients α and β. (If we only need
their absolute values, one of these will be enough, since we can find the other by
imposing the normalization condition 〈32

1
2 |

3
2

1
2〉 = 1.) Let’s now apply J+ = L+ +S+

to both sides of (16). On the left, L+|10〉 =
√

2|11〉, and S+|12
1
2〉 = 0, since the

latter is the top state. So J+ on the left hand side yields
√

2|11〉|12
1
2〉. On the right

hand side, J+|32
1
2〉 =

√
3|32

3
2〉, and J+|12

1
2〉 = 0, since the latter is the top state. Thus

the action of J+ on (16) yields
√

2|11〉|12
1
2〉 = α

√
3|32

3
2〉. (17)

The ket product on the lhs is equal to the ket on the rhs, so we can solve for
α =

√
2/3.

5 Why a filled shell has zero angular momentum

The concept of a filled shell refers to fermionic (antisymmetric) composite states in
which a complete set of states in a given spin-j representation are filled. If a rotation
operator is applied to such a state, the result remains antisymmetric. Since there is
only one such “totally filled” state, it is evidently therefore invariant under rotations.
The angular momentum components are the infinitesimal generators of rotations,
so the fact that the state is rotationally invariant implies that ~J annihilates it.

To illustrate this with the smallest example, consider a composite of two spin-1
2

systems. The unique antisymmetric state we can form using the two basis vectors
|12〉 and |− 1

2〉 is (|12〉|−
1
2〉− |−

1
2〉|+

1
2〉)/
√

2. One cannot form other antisymmetric
states using different basis vectors: the antisymmetric state constructed from a new
basis {α|12〉+ β| − 1

2〉, α
′|12〉+ β′| − 1

2〉} is (αβ′ − α′β)(|12〉| −
1
2〉 − | −

1
2〉| −

1
2〉)/
√

2,
which is proportional to the previous state.

To see why this works in general, consider the totally antisymmetric combination
of products of the 2j+1 states of a spin-j representation (i.e. the Slater determinant
of these states). Now act with any rotation on this state. Each of the states in the
product will be acted on by the same rotation operator, and the resulting state will
still be totally antisymmetric. But there is only one totally antisymmetric tensor
product of n vectors in an n-dimensional vector space, so after the rotation the state
is the same, up to a possible scalar multiple. In fact the scalar multiple is nothing
but the determinant of the 1-particle rotation matrix, which is 1. This means the
antisymmetric state is invariant under all rotations. Another way to see that in
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addition to Jz, both Jx and Jy annihilate the totally antisymmetric state, is to act
with J± = Jx± iJy on the state. Every term either vanishes because m = j cant be
raised, or because m = −j cant be lowered, or because the result of the action is to
make two m values the same, which yields zero because of the antisymmetry of the
state.

In atomic physics, when an `-orbital shell is filled with 2`+ 1 electrons, all with
the same spin state, the total L vanishes, but of course S 6= 0. If on the other hand
the shell is filled with 2(2`+ 1) electrons, then L, S, and J all vanish. I suppose the
easiest way to see this is to note first that Lz and Sz vanish by inspection, and that
the action of the ladder oprators L± and S± do as well, for the same reason as just
explained for J±.
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