Sparse Random Graphs : Assignment 1

Yogeshwaran D.

September 11, 2020

Submit solutions via Moodle by 20th September 10:00 PM.

- 1. Are the following functionals continuous ?
 - (a) $h: \mathcal{G}_* \to \{0, 1\}$ is defined as $h((G, o)) = 1[B_r^G(o) \cong H]$, where $r \ge 0$ and H is a connected graph.
 - (b) $h: \mathcal{G}_* \to \{0, 1\}$ is defined as $h((G, o)) = 1[|\partial B_1^G(o)| = l_1, \ldots, |\partial B_m^G(o)| = l_m]$ where $\partial B_r^G(o) = B_r^G(o) \setminus B_{r-1}^G(o)$ and $l_1, \ldots, l_m \in \{0, 1, 2, \ldots\}^m$.
 - (c) $h: \mathcal{G}_* \to \{0, 1\}$ is defined as $h((G, o)) = 1[|C(o)| \ge k]$ where C(o) is the component of origin.
- 2. Let $D_i, i \in [n]$ be the degrees of the vertices in G(n, p) for $p = \lambda/n, \lambda \in (0, \infty)$. Show that for any $m \ge 1$,

$$\lim_{n \to \infty} \mathbb{P}(D_i = k_i, 1 \le i \le m) = \prod_{i=1}^m \frac{e^{-\lambda} \lambda^{k_i}}{k_i!}.$$

- 3. Let *H* be a connected graph on *k* vertices , k > 1. For any subgraph $H_1 \subset H$, we denote $\frac{|E(H_1)|}{|V(H_1)|}$ by $d(H_1)$, called *the density*. Further, set $m(H) = \max\{d(H_1) : H_1 \subset H\}$. Show the following
 - (a) If $p = o(n^{-1/m(H)})$ then $\mathbb{P}(H \subset G(n, p)) \to 0$.
 - (b) If $p = \omega(n^{-1/m(H)})$ then $\mathbb{P}(H \subset G(n, p)) \to 1$.
- 4. Let T be a finite tree on k vertices. Let $X^*(T,G)$ denote the number of components in G isomorphic to T i.e.,

$$X^*(T,G):=\sum_{F\subset G; |V(F)|=k} \mathbbm{1}[F\cong T]\mathbbm{1}[F \text{ is a component in }G].$$

Let G(n, p) be the ER random graph with $p = \lambda/n, \lambda \in (0, \infty)$. Show that $n^{-1}\mathbb{E}[X^*(T, G(n, p))]$ converges as $n \to \infty$ and also find the limit.

5. Show that for $p = \lambda/n, \lambda \in (0, \infty)$, we have that ¹

$$\underline{X(C_4, G(n, p))} \xrightarrow{d} Poi(\frac{\lambda^4}{8}).$$

¹Anyone is welcome to try for general C_k .

6. Denote by $\phi_S(t)$ the probability generating function of the total number of nodes in the GW tree; $\phi_S(t) := \mathbb{E}[t^S]$ where S is the number of nodes in the GW tree. Show that

$$\phi_S(t) = t\phi_N(\phi_S(t)), s \in [0, 1],$$

where ϕ_N is the probability generating function of the off-spring random variable N.