Due: Thursday, October 1st

Let G be a graph with n vertices.

- 1. Let F be a fixed graph with k vertices.
 - (a) Suppose K_n is the complete graph on n vertices then show that

$$emb(F, K_n) = \prod_{i=0}^{k-1} (n-i),$$

where $emb(F, K_n)$ is the number of injective homomorphisms of F into G.

(b) Show that

$$emb(F,G) = aut(F)X_F(G),$$

where $\operatorname{aut}(F,G)$ is the number of automorphisms of F into F and $X_F(G)$ is the number of subgraphs of G isomorphic to F.

2. Suppose hom(F,G) are the number of homomorphisms from F to G then show that

$$t(F,G):=\frac{\hom(F,G)}{n^k}=s(F,G)+O(\frac{1}{n}),$$

with
$$s(F,G) = \frac{X_F(G)}{X_F(K_n)}$$

3. Let \mathcal{F} denote the set of isomorphism classes of finite graphs eumerated by $\{F_1, F_2, \ldots\}$, with each F_i being a representative of an isomorphism class. Define:

$$d_{\text{sub}}(G, G') = \sum_{i>1} 2^{-i} |s(F_i, G) - s(F_i, G')|.$$

- (a) Show that $(d_{\text{sub}}(G, G'), \mathcal{F})$ is a discrete metric space.
- (b) If we replace s with t in the above definition of d_{sub} then do we obtain a metric on \mathcal{F} ?
- 4. Let $\kappa:[0,1]^2\to [0,1]$ be symmetric and measurable. Extend s to κ by:

$$s(F,\kappa) = \int_{[0,1]^k} \prod_{\{i,j\} \in E(F)} \kappa(x_i, x_j) dx_1 \cdots dx_k,$$

Divide [0,1] into n intervals $I_1, \ldots I_n$ of equal length (ignore end points), and set $\kappa_G : [0,1]^2 \to [0,1]$ to be given by

$$\kappa_G(x,y) = \begin{cases}
1 & \text{if } (x,y) \in I_i \times I_j \text{ and } (i,j) \text{ is an edge in } G. \\
0 & \text{otherwise.}
\end{cases}$$

Show that $t(F,G) = s(F,\kappa_G)$.