
Generators in JavaScript
CPEN400A: Lecture 10



Outline
What are generators ?

Creating a simple generator

Iterating with a generator

Combining generators with promises



What is a generator ?
Generators are functions in JavaScript that can pause their execution at a certain 
point and resume from where they left off

Used to “remember” state of the function at the point where it left off

Solves the “inversion of control” problem encountered with call-backs



Inversion of control
Consider an array in JavaScript on which you want to perform some operation, 
say add a constant to all the numbers in the array. 

The traditional way to do this is with a callback function and higher-order functions, 
i.e., pass the function as a call-back to another function that does the operation

However, this breaks the traditional control flow where the operation to be done 
(i.e., adding a constant) is separated from the iteration operation

- Makes code hard to read as one has to trace flow to a different call
- Need specialized asynchronous functions for each operation - proliferation



Enter generators
Generators solve the inversion of control problem, by providing a generic way to 
perform the iteration, so the operation doesn’t have to be done in a call-back

Are very powerful when combined with Promises for async operations (later)

var g = generatorFunc(); // this is the generator function

for  (v of g) {

// Perform operation on v directly

} 



Outline
What are generators ?

Creating a simple generator

Iterating with a generator

Combining generators with promises



Generator function
These are specialized functions in ES6 and later

Denoted with a ‘*’ in the function declaration (function* foo())

Has a special kind of return called a ‘yield’ to pause the execution at that point, 
and resume the execution on a subsequent call to the generator

Yield can also return a value to the caller - typically value being iterated on

When end of function is reached, it returns ‘undefined’ (can also specify a return) 
value, and the generator is DONE. Cannot be resumed after that point ever.



SimpleGenerator
Consider the code in simple-generator.js

Returns a sequence of numbers starting with an initial value and a step size

Some points to note:

1. This is an infinite generator, and as such never terminates (in theory)
2. Generator automatically remembers its state from the previous invocation
3. Numbers are computer ‘lazily’ on demand with each call to the generator
4. This generator doesn’t ever return a value, only yields



Class activity - 1
Write a simple generator function to yield all the factors of a natural number 
(including itself) - the function should only calculate the factors on demand and not 
ahead of time. You can assume that the input has been validated already.

Solution: factor-generator.js 



Outline
What are generators ?

Creating a simple generator

Iterating with a generator

Combining generators with promises



Iterating with generators
After a call to the generator function, you receive an object that you’d use for 
iteration by calling next method on it - this goes to the next yield in the function

The object returned by yield has a field called ‘done’ to denote end of iteration

There are 2 methods of iterating over generators: 

1. Using a while loop, and checking explicitly for done (ugly method)
2. Using a ‘for-of’ loop, and checking implicitly for done (elegant method)



Yield 

First time the next is called: executes until a ‘yield’ is encountered

- Control is then ceded back to the calle function (but state is remembered)

Each subsequent call to the yield resumes execution from after where the first 
‘yield’ left off, and executes until the next yield statement (state is remembered), or 
a return statement or throw occurs in the function (the generator is terminated)

IMPORTANT: Yield can only be called within generator function itself, not even in 
nested functions or from asynchronous callbacks (we’ll talk about this later)



Value returned by yield
Yield returns an object called IteratorResult consisting of

1. value: represents the actual value returned by the yield statement
2. done: a boolean flag representing whether or not the iteration is finished

It’s caller’s responsibility to check value of ‘done’. In addition, the generator can

a. Throw an exception - this can be caught via a try-catch statement
b. Return a value (using ‘return’) - sets the value of IteratorResult to value and 

the done property to true. Note that not returning a value will still set the done 
property to true and the value to ‘undefined’



Example Code
Look at the code in iterator.js - it iterates over a list of names with a generator

The generator function takes the list as an argument, and yields one name at a 
time, in the list order.

The code demonstrates two ways to do the iteration - the ugly way and the elegant 
way. These are semantically identical to each other, with one difference.

- The value returned by the generator (not yielded) cannot be retrieved in the 
second method

- Can be 



Class Activity - 2
Can you think of a way to get the number of elements iterated over by the 
generator function in the second method of iteration as well (using for-of loops) ?

HINT: Think of how else you can exit a generator function

Solution in iterator2.js



Activity 3
Write a generator function to iterate over a large string, and find all occurrences of 
a specific word in it. The generator should match the word on demand only and 
not pre-compute the matches. Also, after each match, it should start from the next 
location until the end of the string is reached. It should yield the number of 
characters traversed in the string after the previous match (until the current one)

Write another function to iterate using the generator function and count *all* 
occurrences of a given word in a string.

Solution: word-match.js



Outline
What are generators ?

Creating a simple generator

Iterating with a generator

Combining generators with promises



Generators and asynchronous call-backs
One of the main advantages of Generators is that they can be used to write code 
in a “natural” style, without using callbacks and closures

However, generators cannot (easily) call asynchronous functions… 

Recall that callbacks defined inside the generators cannot  call yield (as they’re 
not executing in the context of the generator function)

One possible solution: Using promises together with generators



Generators and Promises
Yield a promise in each call of the next() method

- Promise can be resolved or rejected later
- Attach then and catch handlers to the promises as usual

You can also send the results of the resolved promise to the generator as an 
argument of the next function to chain them (outside the scope of this class)

Makes for cleaner code than attaching multiple layers of call-backs to promises



Example code
Code: reader-generator.js

Functionality: Takes an array of files, and uses a generator to iterate over them - 
each time it returns a promise object for the read that can be either resolved or 
rejected depending on whether the read was successful. 

Comments: 

1. Yield does not know the state of the promise at the time of yielding
2. Need to attach .then etc. to the promises that are yielded by the generator



Class Activity - 4
Write a generator function that takes an array of function as the first argument and 
executes them asynchronously, each after a specified delay (second argument). 
The generator function should return a set of promises, one after the other, for 
each function in the list with the appropriate delays. It should also pass to each 
function a parameter representing the current index of the function in the list.

Iterate over the list using the generator and attach a .then and .catch clause to 
each of the promises yielded by the generator.

Solution: asyncGenerator.js 


