BU CS 332 — Theory of Computation

Lecture 14:
* Unrecognizability Reading:
* Undecidability Sipser Ch. 4

Ran Canetti
October 27, 2020

A general theorem about set sizes

Theorem: Let X be a set. Then the power set P(X) does
not have the same size as X.

Proof: Assume for the sake of contradiction that there is a
correspondence f: X — P(X)

Construct aset S € P(X) that cannot be the output f(x)
forany x € X:

S={xeX|x &f(x)}
If S = f(y) forsome y € X,
theny € Sifandonlyify € S

10/27/2020 CS332 - Theory of Computation 2

Diagonalization argument

Assume a correspondence f: X = P(X)

X X1 €Ef(xX)? | x, €Ef(x)? | x3 € f(x)?| x4 € f(X)?
X1 Y N Y Y
X7 N N Y Y
X3 Y Y Y N
X4 N N Y N
Define S by flipping the diagonal:
Put x; €585 & x; € f(x;)

10/27/2020

CS332 - Theory of Computation

An Existential Proof

Theorem: There exists an unrecognizable language over
{0,1}

Proof:
Set of all Turing machines: X € {0,1}"

Set of all languages over {0, 1} = all subsets of {0, 1}"
= P(X)

There are more languages than there are TMs!

10/27/2020 CS332 - Theory of Computation

Questions

* Are there languages that are recognizable but not
decidable?

recognizable

context free

regular

10/27/2020

Questions

* Are there languages that are recognizable but not
decidable?

* Are there any languages of interest that are
unrecognizable/undecidable?

10/27/2020 CS332 - Theory of Computation

A Specific Undecidable Language

Aty = {{M,w) | M is a TM that accepts input w}
Theorem: Aty is undecidable

Proof: Assume for the sake of contradiction that TM H
decides Atp:

accept if M accepts w
reject if M does notacceptw

H({M,w)) = {

Diagonalization: Use H to check what M does when given
as input its own description...and do the opposite

10/27/2020 CS332 - Theory of Computation 7

A Specific Undecidable Language

Aty = {{M,w) | M is a TM that accepts input w}
Suppose H decides Aty

Consider the following TM D.
On input (M) where M is a TM:

1. Run H on input (M, (M))
2. If H accepts, reject. If H rejects, accept.

Question: What does D do on input (D)?

10/27/2020 CS332 - Theory of Computation

How is this diagonalization?

10/27/2020 CS332 - Theory of Computation

How is this diagonalization?

TMM |M((M1))? | M((M2))? | M((M3))? | M((M4))?

M, Y N Y Y
M, N N Y Y
M; Y Y Y N
M, N N Y N

D accepts input (M;) < M; does not accept input (M;)

10/27/2020 CS332 - Theory of Computation 10

How is this diagonalization?
T™M M | M((M1))? | M((Mp))? | M((M3))? | M((M))? | | D(D))?
M, Y N Y Y

M, N N Y Y

M3 Y Y Y N

M, N N Y N

D

D accepts input (M;) < M; does not accept input (M;)

10/27/2020 CS332 - Theory of Computation 11

Classes of Languages: updated view

recognizable

context free

regular

10/27/2020 CS332 - Theory of Computation

12

A specific unrecognizable Language

Theorem: A language L is decidable if and only if L and L
are both Turing-recognizable.

Proof:

10/27/2020 CS332 - Theory of Computation 13

A specific unrecognizable Language

Theorem: A language L is decidable if and only if L and L
are both Turing-recognizable.

Corollary: If L is Turing-recognizable and undecidable
then L is not Turing-recognizable.

10/27/2020 CS332 - Theory of Computation 14

A specific unrecognizable Language

Theorem: A language L is decidable if and only if L and L
are both Turing-recognizable.

Corollary: If L is Turing-recognizable and undecidable
then L is not Turing-recognizable.

Define:

R = decidable languages

RE = Turing-recognizable languages
coRE = {L | L is Turing recognizable}

10/27/2020 CS332 - Theory of Computation 15

Classes of Languages: updated view

recognizable

context free

regular

10/27/2020 CS332 - Theory of Computation

16

Enumerators

10/27/2020 CS332 - Theory of Computation

17

TMs are equivalent to...

* TMs with “stay put”

* TMs with 2-way infinite tapes
* Multi-tape TMs

* Nondeterministic TMs

* Random access TMs

* Enumerators

10/27/2020 CS332 - Theory of Computation

18

Enumerators

.. b
Finite Work tape
control
|

“Printer”

 Starts with two blank tapes

* Prints strings to printer

L(E) = {strings eventually printed by E'}

* May never terminate (even if language is finite)
* May print the same string many times

10/27/2020 CS332 - Theory of Computation 19

Enumerator Example

1

2. Repeat forever:
* Calculates = ¢
* Send s to printer
* Increment ¢

1. Initialize c

2 (in binary)

What language can an enumerator generate?

T

10/27/2020 CS332 - Theory of Computation

20

Enumerable = Turing-Recognizable

Theorem: A language is Turing-recognizable & some
enumerator enumerates it

< Start with an enumerator E for A and give a TM

10/27/2020 CS332 - Theory of Computation

21

Enumerable = Turing-Recognizable

Theorem: A language is Turing-recognizable & some
enumerator enumerates it

= Start with a TM M for 4 and give an enumerator

10/27/2020 CS332 - Theory of Computation

22

Reductions

10/27/2020 CS332 - Theory of Computation

23

Scientists vs. Engineers

A computer scientist and an engineer are stranded on a

desert island. They find two palm trees with one coconut
on each. The engineer climbs a tree, picks a coconut and
eats. i

Ji (|1 \ W

The computer scientist climbs the second tree, picks a
coconut, climbs down, climbs up the first tree and places
it there, declaring success.

“Now we’ve reduced the problem to one we’ve already
solved.”

10/27/2020 CS332 - Theory of Computation 24

Reductions

A reduction from problem A to problem B is an algorithm

for problem A which uses an algorithm for problem B as a
subroutine

If such a reduction exists, we say “A reduces to B”

10/27/2020 CS332 - Theory of Computation 25

Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A
is also decidable

EQDFA —_ {(Dl, Dz) |D1, D2 dare DFAS and L(Dl) — L(Dz)}
Theorem: EQpp, is decidable
Proof: The following TM decides EQpga

On input (D, D,), where (D4, D,) are DFAs:

1. Construct a DFA D that recognizes the symmetric
difference L(D;{) A L(D-)

2. Run the decider for Epga on (D) and return its output

10/27/2020 CS332 - Theory of Computation 26

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Aty = {(M,w) | M is a TM that accepts input w}
Suppose H decides Aty

Consider the following TM D.

On input (M) where M is a TM:

1. Run H on input (M, (M))

2. If H accepts, accept. If H rejects, reject.

Claim: D decides
SAty = {{M) | M is a TM that accepts on input (M)}

10/27/2020 CS332 - Theory of Computation

27

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Proof template:
1. Suppose to the contrary that B is decidable

2. Using B as a subroutine, construct an algorithm
deciding A

3. But A is undecidable. Contradiction!

10/27/2020 CS332 - Theory of Computation

28

Halting Problem

HALTyy = {{M,w) |M is a TM that halts on input w}
Theorem: HALTty is undecidable

Proof: Suppose for contradiction that there exists a decider H
for HALT+ty. We construct a decider for Aty as follows:

On input (M, w):

1. Run H on input (M, w)

2. If H rejects, reject

3. If H accepts, simulate M on w

4. If M accepts, accept. Otherwise, reject

This is a reduction from Aty to HALT 1y

10/27/2020 CS332 - Theory of Computation 29

Empty language testing for TMs

Etpm = {{M)|MisaTM and L(M) = ¢}
Theorem: E1y is undecidable

Proof: Suppose for contradiction that there exists a decider R
for ETp. We construct a decider for Aty as follows:

On input (M, w):
1. Run R oninput ???

This is a reduction from Ay to Ety

10/27/2020 CS332 - Theory of Computation 30

Empty language testing for TMs

Etpm = {{M)|MisaTM and L(M) = ¢}
Theorem: E1y is undecidable

Proof: Suppose for contradiction that there exists a decider R
for Ety. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM M’ as follows:

2. Run R on input (M")
3.IfR , accept. Otherwise, reject
This is a reduction from Aty to Evm

10/27/2020 CS332 - Theory of Computation 31

Context-free language testing for TMs

CFLty = {{M) |M isaTM and L(M) is context — free}
Theorem: CF Lty is undecidable

Proof: Suppose for contradiction that there exists a decider R
for CFLty. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM M’ as follows:

2. Run R on input (M")
3. If R accepts, accept. Otherwise, reject
This is a reduction from Aty to CF Lty

10/27/2020 CS332 - Theory of Computation 32

Context-free language testing for TMs

CFLty = {{M) |M isaTM and L(M) is context — free}
Theorem: CF Lty is undecidable

Proof: Suppose for contradiction that there exists a decider R
for CFLty. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM M’ as follows:
M’ =“Oninput x,
1. If x € {0™"1"2" | n = 0}, accept
2. Run TM M on input w
3. If M accepts, accept.”
2. Run R on input (M")
3. If R accepts, accept. Otherwise, reject
This is a reduction from Aty to CF Lty

10/27/2020 CS332 - Theory of Computation 33

