Finding nearest neighbours using minhashing

In this lab, we apply min-hashing to predict user ratings for the Amazon book reviews dataset

Dataset(s)

Recall that your data is a .json file. Each line describes a review and has the following format:

{"reviewerID": "A14CK12J7C7JRK", "asin": "1223000893", "reviewerName":

"Consumer in NorCal", "helpful": [0, 0], "reviewText": "I purchased the Trilogy with hoping my two cats, age 3 and 5 would be interested. The 3 yr old cat was fascinated for about 15 minutes but when the same pictures came on, she got bored. The 5 year old watched for about a few minutes but then walked away. It is possible that because we have a wonderful courtyard full of greenery and trees and one of my neighbors has a bird feeder, that there is enough going on outside that they prefer real life versus a taped version. I will more than likely pass this on to a friend who has cats that don't have as much wildlife to watch as mine do.", "overall": 3.0, "summary": "Nice Distraction for my cats for about 15 minutes", "unixReviewTime": 1294790400, "reviewTime": "01 12, 2011"}

Our analysis goal

The dataset is split into a a training and a test csv file, with the format

```
ReviewerId, asin, rating, Timestamp
```

Only this information from the original dataset is retained (Timestamp) is not used for the moment). Given a pair (u, i) in the training set, our goal is estimating $r_u(i)$, i.e., u's rating of item i. To this purpose, we use the following estimator:

$$\hat{r}_u(i) = \overline{r}_u + rac{\sum_{v \in N(u,i)} (r_v(i) - \overline{r}_v) J(u,v)}{\sum_{v \in N(u,i)} J(u,v)}$$

where \overline{r}_x is the average rating given by a user x on the items she rated in the training set, J(x,y) is the Jaccard similarity between the items rated by x and y (in the training set) and N(u,i) is the subset of u's neighbours in the training set who also rated i. In particular, v is considered a neighbour of u whenever $J(u,v) \geq \theta$, with θ a suitable threshold. We could tentatively pick $\theta=0.05$ for this dataset, being aware that this is a critical choice, which might i) have an impact on our design choices (e.g., the parameters of the LSH data structure) and ii) on the quality of results (e.g., too low a θ might negatively impact accuracy of the estimate, too high a value might result in too few similar users to the one under consideration).

Implementing the idea

Given the size of the dataset, we use LSH for Jaccard similarity estimation. This means, in the above formula

• J(x,y) will actually be an estimate of the actual Jaccard similarity between x's and y's baskets

• N(u,i) will be the subset of users that are near neighbours of u according to LSH and who also happened to have rated i.

For development, we will resort to <u>scikit surprise</u> for the recommender system infrastructure and to perform validation, while we use the <u>datasketch</u> package's implementation LSH for Jaccard similarity.

Note that you are implementing your own prediction algorithm in *surprise*, so please first of all refer to the guidelines given in the documentation. To simplify things, I uploaded a stub of a python module you might implement. You will notice that implementing your own prediction algorithm entails three main steps: i) extending the AlgoBase class of *surprise*; ii) implementing the fit method (here is where you initialized the LSH data structure using your training set); iii) implementing the estimate method (this is invoked in the validation phase, one time for each record in the test set).

Please feel free to modify the code I gave you