
An almost self-contained introduction
to the Singular Value Decomposition

 

Disclaimer. This is a first draft needing revision. Some parts are missing,
references are missing, mistakes might be there. You are welcome to
point me to mistakes or inconsistencies.

 

These notes are intended to provide a short, guided tour of the Singular Value Decomposition
(henceforth, SVD), showing how it directly follows from general properties of square, symmetric
matrices. Proofs are intended to provide an understanding of key aspects, such as the existence
of an SVD. This presentation is (almost completely) self-contained and basically builds on the
definitions of eigenvalue and eigenvector of a matrix.

Key notions in matrix linear algebra  

We begin by considering a generic, square matrix . For such a matrix an (eigenvalue,
eigenvector) pair are a scalar  and a vector , such that the following holds:

In this case,  is a right eigenvector of . Analogously, a left eigenvector is a vector , such that 
. The following should be noted: the equation  is equivalent to the

following homogeneous system:

If you go back to your Math classes, you will remember that the system above admits a non-trivial
solution (i.e., a solution ) if and only if  is singular. In turn, singularity implies 

. This determinant provides a polynomial in the unknown  (the so-
called characteristic polynomial) and, not surprisingly, the eigenvalues of  are the roots of .
Of course, eigenvalues are the same, whether we are looking at left or right eigenvectors. On the
other hand, for a generic square matrix , left and right eigenvectors associated to the same
eigenvalue will differ in general.

The wonderful world of symmetric matrices  

Next, assume  is symmetric. A number of marvelous things happen, most of which are very
easy to see, though we begin with a property we are not going to prove:

Claim 1. All eigenvalues of a symmetric matrix are real.

Next, we show that left and right eigenvectors are indeed the same.

Claim 2. If  is a right eigenvector of  with eigenvalue ,  is also a left eigenvector for the same
eigenvalue.

Proof. We simply transpose the equation  and remember that  is symmetric:

We next prove a very important property, key to the diagonalization of symmetric matrices.

Claim 3. If  is symmetric, eigenvectors associated to different eigenvalues are mutually
orthogonal.
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Proof. Assume  and , with . Consider . We can expand this
expression in two ways. The first time we use , the second time we use Claim 2.
Namely, symmetry of  implies that, if ,  also holds. In the first case we
have:

In the second case we have:

Subtracting this equation from the former we get:

Since ,  has to hold, which proves Claim 3.

Remark. In the remainder, we assume eigenvectors are normalized, i.e., we assume they have
unit 2-norm (this is the Euclidean norm). A basis of unit norm, mutually orthogonal vectors is
called an orthonormal basis.

Next, define by  the  matrix, whose -th column is  (assumed normalized). Then, Claim 3
implies . This means that  is invertible and , which in turn implies .
Hence, we have Claim 4:

Claim 4. Assume  is an orthonormal eigenvector basis for a symmetric matrix . Then,

Note that Claim 4 also implies that i)  is invertible and ii) its inverse is .

Remark. Claim 4 immediately follows from Claim 3 if we assume . If the algebraic
of  is , we have exactly  linearly independent eigenvectors associated to , and we can
always consider and orthonormal base of their span (using Gram-Schmidt orthogonalization
procedure). While we do not prove this case (the proof follows from the fact that the null-space of 

 must have dimension  and from Claim 3 for pairs of distinct eigenvalues). Note that this
also applies to the null-space of  itself, i.e., if the eigenvalue  has algebraic multiplicity  (

), we can identify  mutually orthonormal eigenvectors associated to the
eigenvalue .

Now, using the claims above, we can show that any symmetric matrix  can be diagonalized. This
is Claim 5 below.

Claim 5. Any symmetric matrix  can be written as:

where  and where  denotes the -th eigenvector (the one associated to ).

Proof. For simplicity, we give the proof for the case , i.e., when all eigenvalues
are simple, but the proof can be easily extended to the case in which one or more eigenvalues
have multiplicities larger than .

For every , from Claim 2 we have . Define the diagonal matrix , such
that . Further, define by  the  matrix, whose -th column is . Then, the equations
above can be written in matrix form as:



If we left-multiply both sides by  and right-multiply by  we obtain , which can be
written as (check!):

This completes the proof of Claim 5.

Note that if we have  eigenvalues equal to  (i.e., ), we only have  terms
in the sum above, reflecting 's rank.

Decomposing a rectangular matrix - the SVD  

We now possess the necessary tools to show a beautiful decomposition, which applies to any
(generally rectangular) matrix .

To this purpose, we begin by considering the ( -dimensional) matrix . This matrix is
clearly symmetric (you can check this directly, by writing down  and verifying that 

) and, therefore, it admits an orthonormal eigenvector basis. Denote it by 
 and let  be the corresponding eigenvalues. We next prove a

number of claims:

Claim 6. For every , .

Proof. We have  by definition, which implies:

Here, the first inequality follows since  is simply the (squared) 2-norm of the vector 
and is thus non-negative, while the last equality holds because the 's are unit norm vectors.

Since  for every , we set  in the remainder, which in turn implies 
. We next prove the following

Claim 7. For every , consider the -dimensional vector . Then,  is a unit 2-norm

eigenvector of , with eigenvalue . Moreover, the 's form an orthonormal basis.

Proof. We begin by showing that . To this purpose we write:

where to derive the third equality we recall that  is the -th eigenvector of .

Next, we have:

where the first equality follows from the definition of , the second follows since  is an
eigenvector of  with eigenvalue , while the third again follows from the definition of .
Hence,  is an eigenvector of , with eigenvalue .

Finally, consider , for . We have:
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Here, the first equality follows from the definition of the 's, the second follows since  is an
eigenvector of  with eigenvalues , while the last follows since the 's form an orthonormal

basis. This completes the proof of Claim 7.

Claim 8 (existence of the SVD). Consider any real matrix . There exist matrices 
 and  such that:

1.  is an orthonormal basis in ,  is an orthonormal basis in .
2. , where  is an  diagonal matrix and , for every , with 

.

Proof. Take ,  to be the matrices whose columns are the left and right singular vectors,
respectively. Let  be the diagonal matrix, such that . From Claim 7, we know that  and 

 are related as follows:

We can write the latter equality in compact matrix form as:

If we right-multiply by  we get:

This completes the proof of Claim 8. You should convince yourself (by checking) that the formula
above is equivalent to:

SVD and dimensionality reduction  

In this section, we discuss interesting properties of the SVD. In particular, its ability to provide a
low rank approximation of a given matrix.

Assume again we have a matrix .  will have some rank , which is equal to the number
of non-zero singular values (you may want to figure out why). Say we are interested in the matrix 

 of rank at most  (possibly ) that best approximates  in some sense. This means
that  will be an approximation of  in a lower dimensional space (at most ), i.e., a low rank
approximation. In order to formally define this problem, we need a notion of "distance" between 

 and . In the remainder, we consider the Frobenius norm. The Frobenius norm of an 
matrix  is defined as:

At this point, identifying a low rank approximation of  can be formulated as a constrained
optimization problem as follows:

Define by  the truncated SVD of , namely, the matrix obtained by considering the first  terms
in the SVD decomposition of :
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The following Theorem establishes a key property of the SVD:

Theorem 9 (Eckart–Young–Mirsky).  is an optimal solution for the low rank approximation
problem.

While we are not proving this theorem here, it is interesting to provide some insight into the error
guarantees afforded by choosing . In particular, we next prove the following

Claim 10.

Proof. We begin by observing that Claim 8 and the definition of  imply 
. For the remainder of this proof, for any matrix , we denote by 

the -th row of . Then, the definitions of Frobenius norm of a matrix and of -norm of a vector
immediately imply:

We next leverage this observation, together with the fact that, if  is a row vector, .
If we apply these observations to  we obtain:

In our case, we have , hence, for every :

where the second and third inequalities follow because the 's form an orthonormal basis. As a
consequence we have:

where the third equality follows by exchanging sums, while the fourth follows since the 's are
unit norm vectors. This completes the proof of Claim 10.

Together, Theorem 9 and Claim 10 tell us that, in some sense, singular values "measure" the
strength of the signal carried by each term in the SVD of . In this respect, choosing 
amounts to removing the weakest components in terms of strength. In light of Claim 10, if one
asked us to pick a subset  of size , so as to minimize 

, the obvious choice would be . Consider this as a weaker, yet
pretty intuitive version of Theorem 9.



Singular values and explained variance  

Very often, people (and sklearn  documentation) speak of explained variance. Let us try to make
this notion clearer. Recall that:

We next consider the sum of the squared lengths of 's rows onto the -th right singular vector 
, i.e., we are interested in  (note that  is a vector with a number of components equal
to the number of rows, with the -th component the projection of the -th row  of  onto ).
Since the above equation implies  we have:

Hence, if  denotes the generic,  component of :

where the last equality follows since  has unit 2-norm. The left-hand side of the above chain of
equalities is called spread. It basically measures how much of total length of 's rows is spread
along the direction of . If the the data were centered (i.e., if the sum of the entries of each row
of  were ),  would be the statistical variance of the data points (provided these are the
rows of ) along direction . This is what happens with PCA, where data are first centered and
then SVD is applied, hence the term explained variance.

In this perspective, the first right (left) singular vectors are the directions that maximize the overall
statistical variance (or spread, when data are not centered).
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