

Spark

Ex.: counting word occurrences

● A simple task but your dataset is large …
– 4 Billion documents (e.g., Web pages)
– You need to compute term frequencies

● E.g., this is important to compute TfIdf weights

● You would like to use a distributed
environment
– Say, you have powerful but commodity

computers connected via a GB ethernet
network

Main issues in MPC

● Task allocation/load balancing
● Synchronization
● Fault tolerance
● Many more, but these are really serious

– Efficient use of available resources
– Effective parallelization → speed up over

sequential processing
– Correctness of the computation

Now check this ...

hello big data

big data everywhere

A

B

● wordcount(A) = {‘hello’: 1, ‘big’:
1, ‘data’: 1}

● wordcount(B) = {‘big’: 1, ‘data’:
1, ‘everywhere’: 1}

wordcount(A U B) = {‘hello’: 1, ‘big’: 2, ‘data’: 2, ‘everywhere: 1’}
=

reduce(wordcount(A), wordcount(B))

What is reduce in this case?

● reduce((“data”, 2), (“data”, 1)) → (“data”, 3)

● This operator is very interesting
– Commutative: reduce((“data”, 2), (“data”, 1)) = reduce((“data”, 1), (“data”, 2))
– Associative: reduce((“data”, 3), reduce((“data”, 2), (“data”, 1)) = reduce(reduce((“data”, 3), (“data”, 2)),

(“data”, 1))

● Implications
– Order is not important
– Split input, solve resulting instances in parallel, then merge
– Load balancing is easier
– If one machine fails, only part of the computation needs restoring

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
return(key, result)

Spark

Main goals

● Locality aware scheduling
● Fault tolerance
● Load balancing
● Non-acyclic data flows

– Iterative jobs
– Interactive analytics

MapReduce

Programming model

● You write a driver program
● Driver program implements high-level

control flow
● Can launch various operations in parallel
● Key abstractions

– Resilient Distributed Datasets
● Transformations

– Parallel operations on RDD's
● Actions

Programming model

Local threads

Worker Worker

Your program
(driver program)

SparkContext

HDFS or other storage

Cluster manager

Task Task

Cache

Executor

Programming model

● Spark application
– Independent set of processes on a

cluster
– Coordinated by a SparkContext

object in the Driver
– Executors at worker nodes

● Execute computational tasks and store
applications data

– SparkContext can connect to
different types of cluster managers

● Spark's standalone, Yarn (Hadoop) or
Mesos

Local threads

Worker Worker

Your program
(driver program)

SparkContext

HDFS or other storage

Cluster manager

Programming model

● Key abstraction: RDD
– Resilient, Distributed (across workers), Dataset

● Parallel operations possible on RDD's. Basic
operation types:
– reduce
– collect
– foreach

Using Spark with Python - pySpark

Python Spark

● Spark adopts programming interfaces in
several languages
– Scala, Java, Python, R

● We consider the Python programming
interface
– PySpark

● Now an Apache project
– http://spark.apache.org

http://spark.apache.org/

What is a Spark program?

● A sequence of operations performed via an
interactive shell (e.g., pySpark)

● An application (e.g., a Python module) submitted
to the cluster

● master parameter defines cluster's type and size

Installing Spark

● Installing a stand-alone binary
– 3-steps installation guide
– Useful for debugging
– Core-level parallelism

● Cluster mode
– Check here for an overview

http://stackoverflow.com/questions/30483409/installing-apache-spark-on-ubuntu-14-04
http://spark.apache.org/docs/latest/cluster-overview.html

Using Spark

Using Spark (Python)

● Either the interactive (Python) shell …

● Or submitting an application

Creating RDD's -
parallelization

We had a Python's list at the driver node
Now we have a a distributed dataset corresponding to it

Creating RDD's from files

● Example: build an RDD from a collection of text files
● A single RDD corresponding to the original file(s)
● Distributed across the cluster (4 partitions in this case)

● Collecting the data will bring the text lines corresponding to all original
files back to the driver as a single Python collection
● A list of string lines in this case
● Careful with collect() !

Number of partitions

Other ways to create RDD's

● Transform an existing RDD
– Further in this lecture

● Create a persisting copy of an existing RDD
– cache or save actions

● Create RDD's from other file formats

Transformations

● Transform an RDD into another
● Examples

– map(func)
– filter(func)
– flatMap(func) → similar to map in MapReduce
– groupByKey([numTasks])
– reduceByKey(func, [numTasks])
– Many more …

● Implemented lazily
– Will only be executed upon invocation of an action

Actions

● Really trigger the computation
● Launch an action implies

– Return a value to the driver program or …
– Write data to external storage

RDD

Typical life-cycle of a Spark
application

Data RDDRDD
RDDRDDRDD

Results

Possible loopback

parallelize
textFile
…...

map
filter
groupByKey
….......

reduce
collect
count
…....

RDD creation Transformations Actions

Actions - examples

Snapshot from Benjamin Bengfort's slideshar presentation
“Fast Data Analytics with Spark and Python”

Note that reduce is an action!

Difference between map and
flatMap

A first example

Apply this function to every line of the RDD and return the corresponding result
A list of strings for every line in this case

Another example walk-
through

● You have a textual corpus
● Build an array/list giving, for each word, its

count across all documents in the corpus

…..
Pippo Topolino
Topolino Pippo Topolino
Pluto Pippo Paperino
…...

…........
Pippo 3
Pluto 1
Paperino 1
Topolino 3

….........

A MapReduce view

map(key, value):
// key: document name; value: text of document

for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(result)

In a picture

Courtesy: Camil Demetrescu & Irene Finocchi

Using pySpark shell

1. Create an RDD from a text file corpus

Using pySpark shell

2. Transform original RDD into a flat word sequence

Use this function to produce map

Using pySpark shell

3. Transform word RDD into a <key, value> pairs RDD
distributed over the cluster

Using pySpark shell

4. Aggregate data by summing values of all pairs with
same key like MapReduce

Aggregation is performed by addition

Using pySpark shell

5. Collect partial results from workers, aggregate and
deliver to driver → In this case a Python list of (word, count pairs)

Standalone application

Allocate to as many worker threads as the number of
logical cores on your machine

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

