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Ex.: counting word occurrences

● A simple task but your dataset is large …
– 4 Billion documents (e.g., Web pages)
– You need to compute term frequencies

● E.g., this is important to compute TfIdf weights

● You would like to use a distributed 
environment
– Say, you have powerful but commodity 

computers connected via a GB ethernet 
network



  

Main issues in MPC

● Task allocation/load balancing
● Synchronization
● Fault tolerance
● Many more, but these are really serious

– Efficient use of available resources
– Effective parallelization → speed up over 

sequential processing
– Correctness of the computation 



  

Now check this ...

hello big data

big data everywhere

A

B

● wordcount(A) = {‘hello’: 1, ‘big’: 
1, ‘data’: 1}

● wordcount(B) = {‘big’: 1, ‘data’: 
1, ‘everywhere’: 1}

wordcount(A U B) = {‘hello’: 1, ‘big’: 2, ‘data’: 2, ‘everywhere: 1’}
=

reduce(wordcount(A), wordcount(B))



  

What is reduce in this case?

● reduce((“data”, 2), (“data”, 1)) → (“data”, 3)

● This operator is very interesting
– Commutative: reduce((“data”, 2), (“data”, 1)) = reduce((“data”, 1), (“data”, 2))
– Associative: reduce((“data”, 3), reduce((“data”, 2), (“data”, 1)) = reduce(reduce((“data”, 3), (“data”, 2)), 

(“data”, 1))

● Implications
– Order is not important
– Split input, solve resulting instances in parallel, then merge
– Load balancing is easier
– If one machine fails, only part of the computation needs restoring

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
return(key, result)
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Main goals

● Locality aware scheduling
● Fault tolerance
● Load balancing
● Non-acyclic data flows

– Iterative jobs
– Interactive analytics

MapReduce



  

Programming model

● You write a driver program
● Driver program implements high-level 

control flow 
● Can launch various operations in parallel
● Key abstractions

– Resilient Distributed Datasets
● Transformations

– Parallel operations on RDD's
● Actions



  

Programming model

Local threads

Worker Worker

Your program
(driver program)

SparkContext

HDFS or other storage

Cluster manager

Task Task

Cache

Executor



  

Programming model

● Spark application
– Independent set of processes on a 

cluster
– Coordinated by a SparkContext 

object in the Driver
– Executors at worker nodes

● Execute computational tasks and store 
applications data

– SparkContext can connect to 
different types of cluster managers

● Spark's standalone, Yarn (Hadoop) or 
Mesos

Local threads

Worker Worker

Your program
(driver program)

SparkContext

HDFS or other storage

Cluster manager



  

Programming model

● Key abstraction: RDD
– Resilient, Distributed (across workers), Dataset

● Parallel operations possible on RDD's. Basic 
operation types:
– reduce
– collect
– foreach 



  

Using Spark with Python - pySpark



  

Python Spark

● Spark adopts programming interfaces in 
several languages
– Scala, Java, Python, R 

● We consider the Python programming 
interface
– PySpark

● Now an Apache project
– http://spark.apache.org

http://spark.apache.org/


  

What is a Spark program?

● A sequence of operations performed via an 
interactive shell (e.g., pySpark)

● An application (e.g., a Python module) submitted 
to the cluster

● master parameter defines cluster's type and size



  

Installing Spark

● Installing a stand-alone binary
– 3-steps installation guide
– Useful for debugging
– Core-level parallelism

● Cluster mode
– Check here for an overview

http://stackoverflow.com/questions/30483409/installing-apache-spark-on-ubuntu-14-04
http://spark.apache.org/docs/latest/cluster-overview.html


  

Using Spark



  

Using Spark (Python)

● Either the interactive (Python) shell …

● Or submitting an application



  

Creating RDD's - 
parallelization

 

We had a Python's list at the driver node
Now we have a a distributed dataset corresponding to it 



  

Creating RDD's from files

● Example: build an RDD from a collection of text files
● A single RDD corresponding to the original file(s)
● Distributed across the cluster (4 partitions in this case)

● Collecting the data will bring the text lines corresponding to all original
files back to the driver as a single Python collection 
● A list of string lines in this case 
● Careful with collect() !

Number of partitions



  

Other ways to create RDD's

● Transform an existing RDD
– Further in this lecture

● Create a persisting copy of an existing RDD
– cache or save actions

● Create RDD's from other file formats



  

Transformations

● Transform an RDD into another
● Examples 

– map(func)
– filter(func)
– flatMap(func) → similar to map in MapReduce
– groupByKey([numTasks])
– reduceByKey(func, [numTasks])
– Many more …

● Implemented lazily
– Will only be executed upon invocation of an action 



  

Actions

● Really trigger the computation
● Launch an action implies

– Return a value to the driver program or …
– Write data to external storage



  

RDD

Typical life-cycle of a Spark 
application

Data RDDRDD
RDDRDDRDD

Results

Possible loopback

parallelize
textFile
…...

map
filter
groupByKey
….......

reduce
collect
count
…....

RDD creation               Transformations   Actions



  

Actions - examples

Snapshot from Benjamin Bengfort's slideshar presentation 
“Fast Data Analytics with Spark and Python”

Note that reduce is an action!



  

Difference between map and 
flatMap



  

A first example

Apply this function to every line of the RDD and return the corresponding result
A list of strings for every line in this case 



  

Another example walk-
through

● You have a textual corpus
● Build an array/list giving, for each word, its 

count across all documents in the corpus

…..
Pippo Topolino
Topolino Pippo Topolino
Pluto Pippo Paperino
…...

…........
Pippo             3
Pluto              1
Paperino        1
Topolino         3

….........



  

A MapReduce view

map(key, value):
// key: document name; value: text of document

for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(result)



  

In a picture

Courtesy: Camil Demetrescu & Irene Finocchi



  

Using pySpark shell

1. Create an RDD from a text file corpus



  

Using pySpark shell

2. Transform original RDD into a flat word sequence

Use this function to produce map



  

Using pySpark shell

3. Transform word RDD into a <key, value> pairs RDD
distributed over the cluster



  

Using pySpark shell

4. Aggregate data by summing values of all pairs with
same key like MapReduce

Aggregation is performed by addition



  

Using pySpark shell

5. Collect partial results from workers, aggregate and
deliver to driver → In this case a Python list of (word, count pairs)



  

Standalone application

Allocate to as many worker threads as the number of
logical cores on your machine
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