

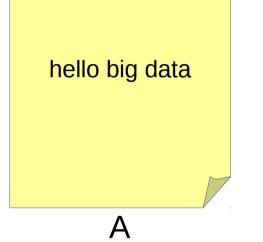
Ex.: counting word occurrences

- A simple task but your dataset is large ...
 - 4 Billion documents (e.g., Web pages)
 - You need to compute term frequencies
 - E.g., this is important to compute Tfldf weights
- You would like to use a distributed environment
 - Say, you have powerful but commodity computers connected via a GB ethernet network

Main issues in MPC

- Task allocation/load balancing
- Synchronization
- Fault tolerance
- Many more, but these are really serious
 - Efficient use of available resources
 - Effective parallelization → speed up over sequential processing
 - Correctness of the computation

Now check this ...



big data everywhere

R

- wordcount(A) = {'hello': 1, 'big': 1, 'data': 1}
- wordcount(B) = {'big': 1, 'data': 1, 'everywhere': 1}

What is reduce in this case?

• reduce(("data", 2), ("data", 1)) \rightarrow ("data", 3)

```
reduce(key, values):
// key: a word; value: an iterator over counts
    result = 0
    for each count v in values:
        result += v
        return(key, result)
```

- This operator is very interesting
 - Commutative: reduce(("data", 2), ("data", 1)) = reduce(("data", 1), ("data", 2))
 - Associative: reduce(("data", 3), reduce(("data", 2), ("data", 1)) = reduce(reduce(("data", 3), ("data", 2)), ("data", 1))
- Implications
 - Order is not important
 - Split input, solve resulting instances in parallel, then merge
 - Load balancing is easier
 - If one machine fails, only part of the computation needs restoring

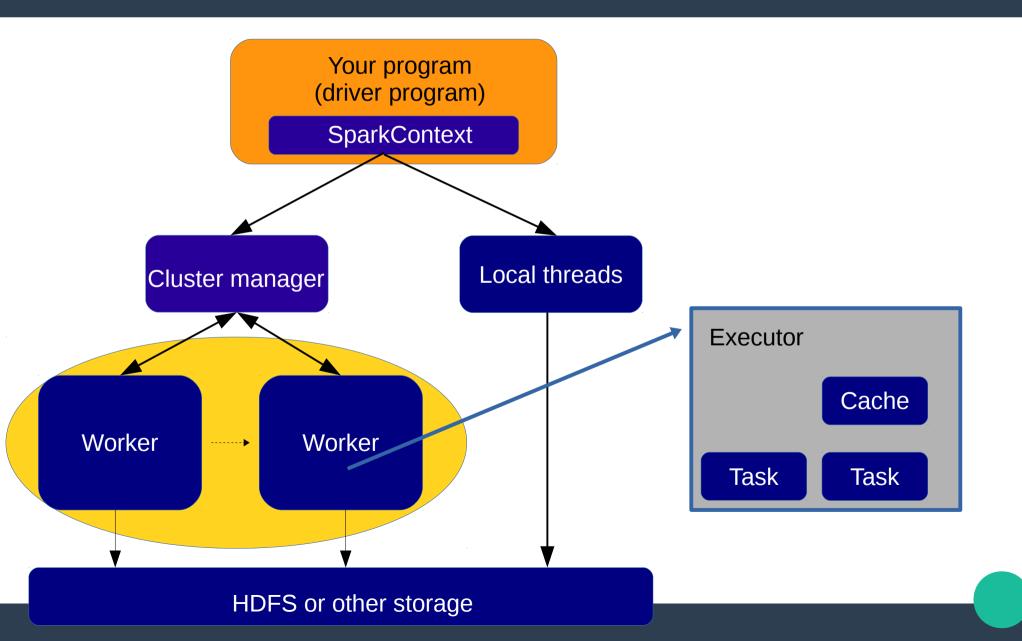
Spark

Main goals

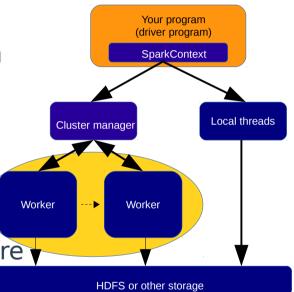
- Locality aware scheduling
- Fault tolerance
- Load balancing
- Non-acyclic data flows
 - Iterative jobs
 - Interactive analytics

MapReduce

- You write a *driver program*
- Driver program implements high-level
 control flow
- Can launch various operations in parallel
- Key abstractions
 - <u>Resilient Distributed Datasets</u>
 - Transformations
 - Parallel operations on RDD's
 - Actions



- Spark application
 - Independent set of processes on a cluster
 - Coordinated by a SparkContext object in the Driver
 - Executors at worker nodes
 - Execute computational tasks and store applications data
 - SparkContext can connect to different types of cluster managers
 - Spark's standalone, Yarn (Hadoop) or Mesos



- Key abstraction: RDD
 - Resilient, Distributed (across workers), Dataset
- Parallel operations possible on RDD's. Basic operation types:
 - reduce
 - collect
 - foreach

Using Spark with Python - pySpark

Python Spark

- Spark adopts programming interfaces in several languages
 - Scala, Java, Python, R
- We consider the Python programming interface
 - PySpark
- Now an Apache project
 - http://spark.apache.org

What is a Spark program?

- A sequence of operations performed via an interactive shell (e.g., pySpark)
- An application (e.g., a Python module) submitted to the cluster
- *master* parameter defines cluster's type and size

Master Parameter	Description
local	run Spark locally with one worker thread (no parallelism)
local[K]	run Spark locally with K worker threads (ideally set to number of cores)
<pre>spark://HOST:PORT</pre>	connect to a Spark standalone cluster; PORT depends on config (7077 by default)
mesos://HOST:PORT	connect to a Mesos cluster; PORT depends on config (5050 by default)

Installing Spark

- Installing a stand-alone binary
 - 3-steps installation guide
 - Useful for debugging
 - Core-level parallelism
- Cluster mode
 - Check here for an overview

Using Spark

Using Spark (Python)

• Either the interactive (Python) shell ...

becchett@becchett-Inspiron:~/DOCS/DIS/Didattica/BigData/Spark/spark-1.4.1-bin-ha doop2.6\$./bin/pyspark --master local[*]

• Or submitting an application

becchett@becchett-Inspiron:~/DOCS/DIS/Didattica/BigData/Spark/spark-1.4.1-bin-ha doop2.6\$./bin/spark-submit --master local[*] ../MyExamples/wordcount_3.py

Creating RDD's parallelization

Using Python version 2.7.6 (default, Jun 22 2015 18:00:18) SparkContext available as sc, HiveContext available as sqlContext. >>> rdd = sc.parallelize([1, 2, 3, 4])

We had a Python's list at the *driver* node Now we have a a distributed dataset corresponding to it

Creating RDD's from files

- Example: build an RDD from a collection of text files
 - A single RDD corresponding to the original file(s)
 - Distributed across the cluster (4 partitions in this case)
- Collecting the data will bring the text lines corresponding to all original files back to the driver as a single Python collection
 - A list of string lines in this case
 - Careful with collect() !

Other ways to create RDD's

- Transform an existing RDD
 - Further in this lecture
- Create a persisting copy of an existing RDD
 - cache or save actions
- Create RDD's from other file formats

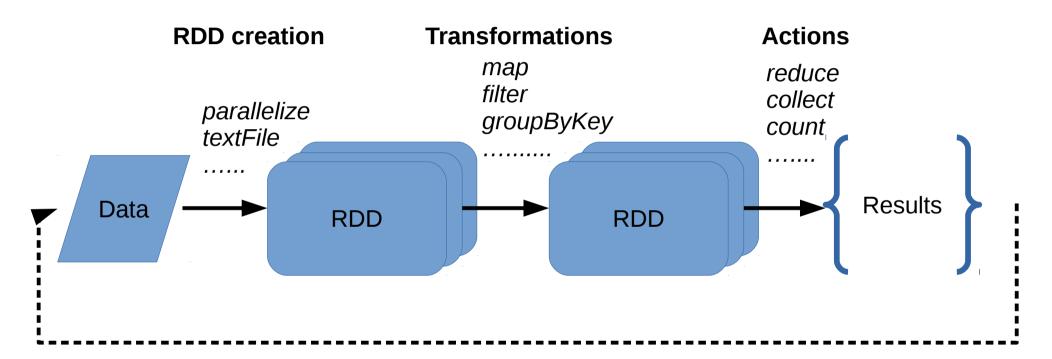
Transformations

- Transform an RDD into another
- Examples
 - map(func)
 - filter(func)
 - **flatMap**(func) \rightarrow similar to map in MapReduce
 - groupByKey([numTasks])
 - reduceByKey(func, [numTasks])
 - Many more ...
- Implemented lazily
 - Will only be executed upon invocation of an action

Actions

- Really trigger the computation
- Launch an action implies
 - Return a value to the driver program or ...
 - Write data to external storage

Typical life-cycle of a Spark application



Possible loopback

Actions - examples

Action	Description
reduce(func)	Aggregate the elements of the dataset using a function func (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel.
collect()	Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter or other operation that returns a sufficiently small subset of the data.
count()	Return the number of elements in the dataset.

Snapshot from Benjamin Bengfort's slideshar presentation "Fast Data Analytics with Spark and Python"

Difference between map and flatMap

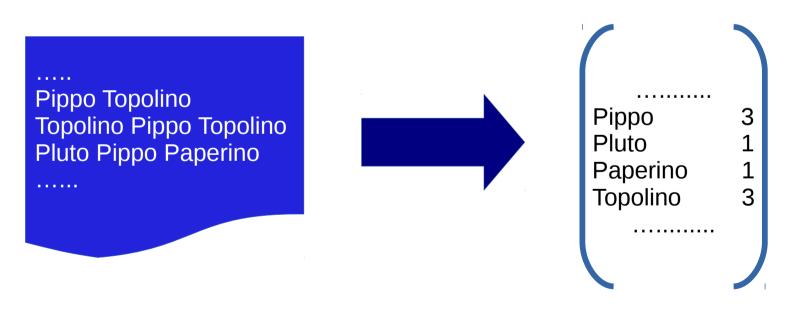
```
>>> lines = sc.textFile("./data/MyData/wordcount_data/file5.txt")
>>> res1 = lines.map(lambda x: x.split()).collect()
>>> res1
[[u'Pluto', u'Paperone', u'Pluto', u'Tom', u'Pippo', u'Clarabella', u'Topolino',
u'Pippo', u'Pippo', u'Titty'], [u'Titty', u'Tom', u'Pippo', u'Paperone', u'Titt
y', u'Pluto', u'Pippo', u'Clarabella'], [u'Paperone', u'Tom', u'Jerry', u'Pluto'
, u'Paperino'], [u'Clarabella', u'Paperino', u'Paperone', u'Pippo', u'Minnie', u
'Jerry', u'Paperone'], [u'Paperino', u'Jerry']]
>>> res2 = lines.flatMap(lambda x: x.split()).collect()
>>> res2
[u'Pluto', u'Paperone', u'Pluto', u'Tom', u'Pippo', u'Clarabella', u'Topolino',
u'Pippo', u'Pippo', u'Titty', u'Titty', u'Tom', u'Pippo', u'Paperone', u'Titty',
u'Pluto', u'Pippo', u'Clarabella', u'Paperone', u'Tom', u'Jerry', u'Pluto', u'P
aperino', u'Clarabella', u'Paperino', u'Paperone', u'Pippo', u'Minnie', u'Jerry'
, u'Paperone', u'Paperino', u'Jerry']
```

A first example

```
def main():
       conf = SparkConf().setAppName("Lines sum").setMaster("local")
       sc = SparkContext(conf=conf)
       lines = sc.textFile("./data/MyData/wordcount data/*.txt")
       print "\nUSING LAMBDA"
       start = time.time()
       lineLengths = lines.map (lambda s: len(s.strip()))
        totalLength = lineLengths.reduce(lambda a, b: a + b)
       print "\nSUM LINES LEN: " + str(totalLength)
        stop = time.time()
       print "\nTIME: " + str(stop-start)
        *****
                               ******
         Apply this function to every line of the RDD and return the corresponding result
         A list of strings for every line in this case
```

Another example walkthrough

- You have a textual corpus
- Build an array/list giving, for each word, its count across all documents in the corpus

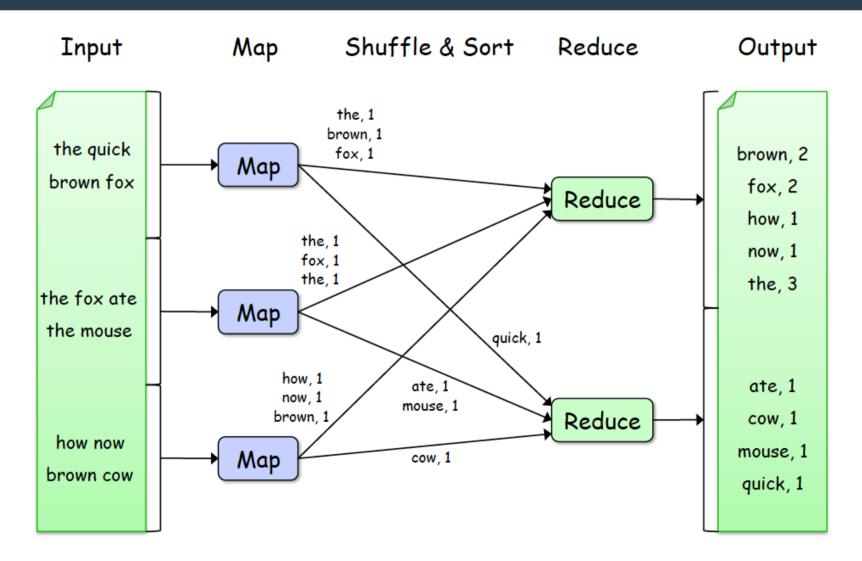


A MapReduce view

map(key, value):
// key: document name; value: text of document
for each word w in value:
 emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
 result = 0
 for each count v in values:
 result += v
 emit(result)

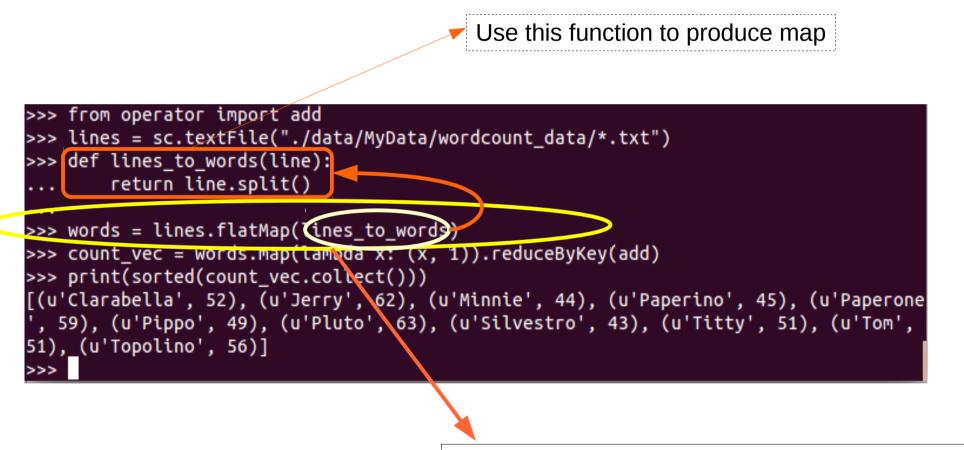
In a picture



Courtesy: Camil Demetrescu & Irene Finocchi

1. Create an RDD from a text file corpus

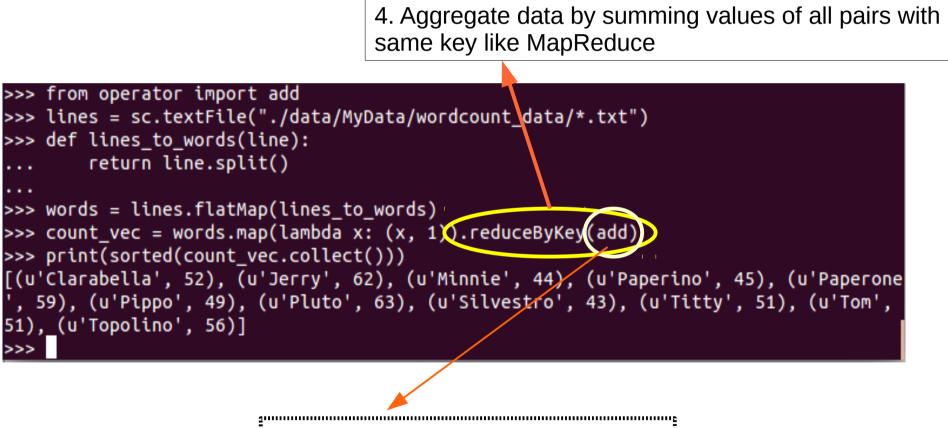
```
>>> from operator import add
>>> fines = sc.textFile("./data/MyData/wordcount_data/*.txt")
>>> def lines_to_words(line):
... return line.split()
...
>>> words = lines.flatMap(lines_to_words)
>>> count_vec = words.map(lambda x: (x, 1)).reduceByKey(add)
>>> print(sorted(count_vec.collect()))
[(u'Clarabella', 52), (u'Jerry', 62), (u'Minnie', 44), (u'Paperino', 45), (u'Paperone
', 59), (u'Pippo', 49), (u'Pluto', 63), (u'Silvestro', 43), (u'Titty', 51), (u'Tom',
51), (u'Topolino', 56)]
>>>
```



2. Transform original RDD into a flat word sequence

3. Transform word RDD into a <key, value> pairs RDD gistributed over the cluster

```
>>> from operator import add
>>> lines = sc.textFile("./data/MyData/wordcount_data/*.txt")
>>> def lines_to_words(line):
...
>>> words = lines.flatMap(lines_to_words)
>>> words = lines.flatMap(lines_to_words)
>>> count_vec = words.map(lambda x: (x, 1)) reduceByKey(add)
>>> print(sorted(count_vec.collect()))
[(u'Clarabella', 52), (u'Jerry', 62), (u'Minnie', 44), (u'Paperino', 45), (u'Paperone
', 59), (u'Pippo', 49), (u'Pluto', 63), (u'Silvestro', 43), (u'Titty', 51), (u'Tom',
51), (u'Topolino', 56)]
>>>
```



Aggregation is performed by addition

5. Collect partial results from workers, aggregate and deliver to *driver* \rightarrow In this case a Python list of (word, count pairs)

```
>>> from operator import add
>>> lines = sc.textFile("./data/MyData/wordcount_data/*.txt")
>>> def lines_to_words(line):
... return line.split()
...
>>> words = lines.flatMap(lines_to_words)
>>> count_vec = words.map(kambda x: (x, 1)).reduceByKey(add)
>>> print(sorted(count_vec.collect()))
[(u'Clarabella', 52), (u'Derry', 62), (u'Minnie', 44), (u'Paperino', 45), (u'Paperone
', 59), (u'Pippo', 49), (u'Pluto', 63), (u'Silvestro', 43), (u'Titty', 51), (u'Tom',
51), (u'Topolino', 56)]
>>>
```

Standalone application

```
from pyspark import SparkContext, SparkConf
from operator import add

def lines_to_words(line):
    return line.split()

conf = SparkConf().setAppName("Word count 2").setMaster("local")
sc = SparkContext(conf=conf)
lines = sc.textFile("./data/MyData/wordcount_data/*.txt")
words = lines.flatMap(lines_to_words)
count_vec = words.map(lambda x: (x, 1)).reduceByKey(add)
print(sorted(count vec.collect()))
```

becchett@becchett-Inspiron:~/DOCS/DIS/Didattica/BigData/Spark/spark-1.4.1-bin-had oop2.6\$./bin/spark-submit --master(local[*])../MyExamples/wordcount_2.py

Allocate to as many worker *threads* as the number of logical cores on your machine