Indian Statistical Institute
 PGDBA, First Year, Mid-Sem of First Semester Examination, 2020-21
 Fundamentals of Database Systems

Answer Keys

1. (a) We can disprove this with the following counterexample.

Let $R_{1}=$

\mathbf{A}	\mathbf{B}	\mathbf{C}
1	2	3

and $R_{2}=$

\mathbf{A}	\mathbf{B}	\mathbf{C}
1	2	3

$R_{1}-R_{2}$ returns no tuple, however, assuming $X=\mathrm{AB}$ returns one tuple for $R_{1} \div \pi x\left(R_{2}\right)$.
(b) As there is no attribute common between R_{1} and R_{2}, this will be the same as Cartesian product. However, the further projection will yield the minimum and maximum number of tuples as 1 and $t 1$, respectively.
2. (a) (i) It is valid denoting total participation with no limit.
(ii) It is valid denoting total participation with maximum cardinality.
(iii) It is invalid because we cannot use ' 0 ' as the maximum cardinality.
(b) Here are the errors.

- name cannot be derived in ALBUM
- name cannot be the primary key in PRODUCER where PRODUCER is a weak entity set

3. (a) Anyone of the following will work.

- select $\operatorname{sum}(F) /$ count (F) as avg_F from R;
- select sum(F)/count(*) as avg_F from R;
(b) Here follows the trigger. Note that, "before insert" will also work.
delimiter //
create trigger EVENT_DISTRIBUTE_AFTER_INSERT
after insert on GRAND
for each row
begin
if new.event = 'Wimbledon' then
insert INTO WIMBLEDON values(new.year, new.name, new.nationality);
end if;
if new.event $=$ 'Australian Open' then
insert INTO AUSTRALIAN values(new.year, new.name, new.nationality);
end if;
if new.event = 'French Open' then
insert INTO FRENCH values(new.year, new.name, new.nationality);
end if;
if new.event = 'US Open' then
insert INTO US values(new.year, new.name, new.nationality);
end if;
end //
delimiter ;

4. (a) (i) This is the same as natural join, hence the size will be $\min \left(\left(t 1^{*} t 2\right) / d 1,\left(t 1^{*} t 2\right) / d 2\right)$.
(ii) This is natural join added with some tuples in R_{1}, hence the size will be $\min \left(\left(t 1^{*} t 2\right) / d 1\right.$, $(t 1 * t 2) / d 2)+t 1$.
(iii) We cannot perform the operation as $A\left(R_{1}\right) \neq A\left(\mathrm{R}_{2}\right)$, hence the size will be 0 .
(b) Here follows an example.
R_{1}

\mathbf{A}	\mathbf{B}	\mathbf{C}
1	1	3
2	2	3

R_{2}

\mathbf{A}	\mathbf{B}	\mathbf{C}
1	3	3
3	1	4

$\sigma_{B=1}\left(R_{1} \cup R_{2}\right)$

\mathbf{A}	\mathbf{B}	\mathbf{C}
1	1	3
3	1	4

$\sigma_{B=1}\left(R_{1}\right) \cup R_{2}$

\mathbf{A}	\mathbf{B}	\mathbf{C}
1	1	3
1	3	3
3	1	4

