Indian Statistical Institute

PGDBA, First Year, Mid-Sem of First Semester Examination, 2020-21
 Fundamentals of Database Systems

Full Marks: 30

Date: 30-12-2020
Time: 2 Hours
Answer any three of the following questions

$$
3 \times 10=30
$$

1. (a) Prove or disprove the following statement: The relational algebra operation $R_{1}-R_{2}$ return no less than the number of tuples returned by $R_{1} \div \pi_{x}\left(R_{2}\right)$, for any arbitrary pair of relations R_{1} and R_{2}. Note that $A\left(R_{1}\right)=A\left(\mathrm{R}_{2}\right)$ and $X \subset A\left(R_{2}\right)$, where $A(R)$ represents the set of attributes in a relation R.
(b) Consider the two relations $R_{1}(V, W)$ and $R_{2}(X, Y, Z)$ having the number of tuples $t 1>0$ and $t 2>0$ tuples, respectively. Without making any assumptions on the keys, find out the minimum and maximum possible number of tuples that may appear in the relation resulting from the expression $R_{1} \propto R_{2}$. Note that the notion \propto denotes a semijoin, which is operationally close to natural join with the only exception that attributes in the first relation are only returned in the result.
2. (a) Note that complex constraints in E-R data model are labeled along the edges between an entity set and a binary relationship set. Comment about the validity of the following complex constraints with appropriate justifications.
(i) $1 \ldots$ *
(ii) *.. *
(iii) $0 \ldots 0$
(b) Identify errors in the following E-R diagram representing details about music albums and their producers. The aid and name in the relation ALBUM denote the album ID and name of the album, respectively. The name and company in the relation PRODUCER denote the name of the producer and the respective company sponsoring the album, respectively.

$$
(2+2+2)+4
$$

3. (a) Let there be a relation $R(F, U, N)$, in which the attribute F is numeric. Write SQL queries that can find out the average value of the attribute F without using the $\operatorname{avg}()$ function. (b) Suppose there is a single table that can keep the details of winners in Grand Slam women's singles champions in tennis. The schema of the table is as follows.

$$
\text { GRAND }=<\text { year }: \text { integer, event }: \text { string, name }: \text { string, nationality }: \text { string }>
$$

The primary keys are underlined in the above table. Note that the event represents the four events that are the part of Grand Slam championship, namely Wimbledon, Australian Open, French Open, and US Open. Create a trigger that can distribute the tuples being entered into this table (retaining the original tuples) into 4 different tables (already existing) keeping the details about different events. The schemas of these tables are as follows.

```
WIMBLEDON = <year : integer, name : string, nationality : string>
AUSTRALIAN = <year : integer, name : string, nationality : string>
FRENCH = <year : integer, name : string, nationality : string>
US = <year : integer, name : string, nationality : string>
```

4. (a) Let there be a pair of relations $R 1$ and $R 2$, with uniformly distributed values over the attributes, both having a combination of two attributes serving as their primary keys. If $R 1$ and $R 2$ share only a single common attribute, say A^{*}, estimate the sizes of the following queries. Assume that the number of tuples in $R 1$ and $R 2$ are $t 1$ and $t 2$, respectively. Further consider that there are $d 1$ and $d 2$ distinct entries of the attribute A^{*} in $R 1$ and $R 2$, respectively.
(i) $R_{1}{ }^{\boldsymbol{\aleph}} R_{2} \cap R_{1} \bowtie_{R_{2}}$.
(ii) $R_{1} \boldsymbol{\aleph}_{R_{2}}$.
(iii) $R_{1}-\left(R_{1}-R_{2}\right)$.
(b) Give a counterexample to disprove the equivalence $\sigma_{\theta}\left(R_{1} \cup R_{2}\right) \equiv \sigma_{\theta}\left(R_{1}\right) \cup R_{2}$, where θ is a predicate.
