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About this Course

This course is an introduction to learning theory. We will present a few definitions of learning, and
then proceed to investigate what can (and cannot) be learned according to each definition, and what
amount of computational resources (especially data and compute time) are necessary in the cases
where learning is possible. Attention will be devoted to understanding definitions and proofs. The
course will generally not cover applications and state-of-the-art technologies. See a list of topics on
the following page.

Recommended Textbooks

1. Shalev-Shwartz and Ben-David. Understanding Machine Learning: From Theory to Algorithms. [SB14]

2. Mohri, Rostamizadeh and Talwalkar. Foundations of Machine Learning. [MRT18]

3. Vapnik. The Nature of Statistical Learning Theory. [Vap00]

Homework: Six problem sets will be assigned throughout the semester.

Grading

Students may choose between the following options:

1. Six problem sets: 100%

2. Four problem sets: 65%; Final research project: 35%.

Prerequisites: CS 170.
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Outline

The following is preliminary and very much subject to change.

Unit Topic References

1
Language identification in the limit
Learning with queries

[MRT18, Ch. 16]

[KV94, Ch. 8]

[Gol67, BB75, Ang80, Ang87]

2

PAC learning:
– Definitions: PAC, agnostic PAC
– Learning via uniform convergence
– No free lunch

[SB14, Ch. 3-5]

[MRT18, Ch. 2]

3

PAC learning:
– VC dimension
– Sauer’s lemma
– Fundamental theorem of PAC learning – Part I

[SB14, Ch. 6]

[MRT18, Ch. 3]

4

PAC learning:
– Rademacher complexity
– Covering numbers
– Fundamental theorem of PAC learning – Part II

[SB14, Ch. 26-28]

[MRT18, Ch. 3]

5 Boosting
[SB14, Ch. 10]

[MRT18, Ch. 7]

6
Runtime complexity of PAC learning
Hardness of learning from cryptographic assumptions

[SB14, Ch. 8]

7 Learning parity with noise, and applications to cryptography [BKW03, KMV08, Reg09]

8
Multiclass learning
Natarajan dimension

[SB14, Ch. 29]

[MRT18, Ch. 8]

9

Nonuniform learning:
– Structural risk minimization
– Occam’s razor
– PAC-Bayes generalization bounds

[SB14, Ch. 7, 31]

[MRT18, Ch. 4]

10 Stability and regularization
[SB14, Ch. 13]

[MRT18, Ch. 14]

11 Sample compression schemes
[SB14, Ch. 30]

[LW86, MY16]

12 Information-theoretic generalization bounds [XR17, BMN+18, SZ20]

13 Learning algorithms from natural proofs [CIKK16]

14 Online learning
[SB14, Ch. 21]

[MRT18, Ch. 8]

15 Solomonoff induction [Sol64a, Sol64b, Leg97]
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