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Unit 1

Language Identification in the Limit

1 Introduction

In this unit we will present a definition of learning called language identification in the limit.
This definition was introduced in 1964 by E. Mark Gold [7, 8], and was a popular formal
model of learning until the advent of the PAC model by Leslie Valiant in the 1980’s. We
will spend a lot of time in subsequent lectures discussing the PAC model of learning, but
before we do so it is worthwhile to get acquainted with Gold’s older definition. In particular,
the limitations of Gold’s definition and the lessons learned from it can serve as motivation
for some of the choices made in the design of the PAC definition, and they highlight why
the PAC definition makes sense. We will say more about this in Section 6 below, and at the
beginning of the next unit.

Gold’s definition of language identification in the limit is modeled on the following game.
Suppose a teacher has in mind some arbitrary subset L ⊆ N, and a learner needs to guess
what the subset L is. The game proceeds in steps, where in each step the teacher reveals an
example x ∈ L, and then the learner makes a guess. For example:

Teacher: 6 is in L.
Learner: I’m guessing that L = {6}.
Teacher: 18 is in L.
Learner: I’m guessing that L = {6n : n ∈ N}.
Teacher: 60 is in L.
Learner: I’m guessing that L = {6n : n ∈ N}.
Teacher: 14 is in L.
Learner: I’m guessing that L = {2n : n ∈ N}.
Teacher: 1002 is in L.
Learner: I’m guessing that L = {2n : n ∈ N}.
...

In the game, the teacher never tells the learner whether the guess is correct or not.
However, if the guess is correct then the learner will not see any examples x ∈ L that are
inconsistent with it, and so the learner will not have any compelling reason to change its
guess from that point onward. The goal of the learner is to eventually converge on the correct
language. Namely, that from some point onward, the learner’s guess will be the correct
language.

The fact that the teacher never tells the learner whether the guess is correct is akin to
how scientists learn about the world. They attempt to find a hypothesis that is consistent
with their observations. If they see an observation that is not consistent with their current
hypothesis, they are inclined to change it in favor of one that is consistent. Nature never offers
any definite confirmation that a hypothesis is correct. Instead, the hope is that scientists
will eventually converge onto some good hypothesis that is consistent with all observations,
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2 Language Identification in the Limit

and from that point onward they will no longer be compelled to change their hypothesis.1
Notice that in the game, the learner only receives positive examples of the form “x is in

L,” and it does not receive negative examples of the form “y is not in L.” This was partially
intended to model the way that children learn their first language. Children are typically
exposed to positive examples, in which people use language correctly, but they are rarely
exposed to negative examples. For example, children are likely to hear something like don’t
tickle me, but they are much less likely to hear an incorrect utterance like don’t giggle me
along with some indication that this utterance is not grammatical. See further discussion on
language acquisition in Section 6 below.

2 Definitions

2.1 Preliminaries
We assume familiarity with basic notions from the theory of computation such as Turing
machines, computable languages, computable functions, as well as enumerators and recursively
enumerable languages. Sipser [16] is an excellent introduction to these topics.

I Notation 1 (Tuples). We denote finite tuples using parentheses like (x1, x2, . . . , xn). A
tuple of length 1 is denoted like so, (x1). The concatenation operator for tuples is denoted
by ◦, e.g., (x1, . . . , xn) ◦ (y1, . . . , yn) = (x1, . . . , xn, y1, . . . , yn). For a tuple or a sequence t,
we write xi ∈ t to denote that xi appears at some location in t, and we write |t| to denote
the length of t. If t is an infinite sequence then |t| =∞.

I Notation 2. N = {1, 2, 3, . . . }. For any n ∈ N, [n] = (1, 2, 3, . . . , n).

I Definition 3 (Symbols, Strings, Languages). An alphabet is a finite set. If Σ is an alphabet,
then we call each member σ ∈ Σ a symbol. A string of length n over Σ for some n ∈ N
is an ordered tuple s = (σ1, σ2, . . . , σn) such that σ1, σ2, . . . , σn ∈ Σ. We will often discard
the parentheses and simply write s = σ1σ2 . . . σn. The set of all strings of length n over
Σ for some fixed n ∈ N ∪ {0} is denoted Σn. The (unique) string of length 0 is called
the empty string and is denoted by ε. We use the Kleene star notation Σ∗ = ∪∞n=0Σn to
denote the set of all strings of finite length over Σ. For any strings s = σ1 . . . σn and
t = τ1 . . . τm over Σ, we denote their concatenation by s ◦ t = σ1 . . . σnτ1 . . . τm, and the
length of each string by | · |, namely |s| = n and |s ◦ t| = n+m. A Language L over Σ is a
set of strings, namely L ⊆ Σ∗. We say that a language L is empty if L = ∅. We say that
L is finite if the cardinality of the set L satisfies |L| <∞, and we say that L is infinite if
|L| =∞.

I Definition 4 (Encodings). For a mathematical object x, we write 〈x〉 to denote the encoding
of x as a string. Namely, x 7→ 〈x〉 is assumed to be some reasonable and computable bijection
X → Σ∗ where X is a set and x ∈ X. The details of the bijection will usually not be specified
because they will not matter to us. We write 〈x1, . . . , xn〉 to denote the encoding of the tuple
(x1, . . . , xn).

2.2 Language Identification in the Limit
The following is a formalization of the game from the introduction. The first definition
describes the sequence of examples that are presented to the learner. The idea is that the

1 This is of course a very rough illustration. In reality, science is a lot more messy than this.
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examples need to be “fair” in the sense that the teacher should not omit any members of
the language. If x is in the language, then the teacher must at some point present x as an
example to the learner (otherwise, the learner would have no way of knowing that x is in the
language, and it would have no hope of converging onto the correct language).

I Definition 5 (Positive Presentation of a Language). Let L ⊆ Σ∗ be a language. A positive
presentation of L is an infinite sequence s of strings s1, s2, s3, . . . such that L = {si}∞i=1. In
other words, the sequence s satisfies the following two conditions:
(i) si ∈ L for all i ∈ N.
(ii) For any s ∈ L there exists i ∈ N such that s = si.

I Remark 6. The empty language ∅ does not have any positive presentations. Every non-
empty language has a positive presentation, and any language with more than one string has
infinitely many positive presentations.

The following two definitions describe the output of the learner. The idea is that the
learner will output thing like “I’m guessing that the correct language is language no. 17”,
refering to an index of a language within some agreed-upon indexing of all the possible
languages that the learner could guess.

I Definition 7 (Computable Indexing). Let L be a set of languages over an alphabet Σ. A
computable indexing of L is an infinite sequence of languages L1, L2, . . . such that:
(i) {Li}∞i=1 = L, and
(ii) There exists a Turing machine D such that for any i ∈ N and any s ∈ Σ∗,

D(〈i, s〉) = 1(s ∈ Li).

Namely, if D is executed with the encoding of (i, s) as input then D halts, and further-
more D outputs 1 if s ∈ Li and it outputs 0 otherwise.

I Remark 8. If a set of languages L has a computable indexing, then in particular each
language in L is computable, L is finite or countable, and L is recursively enumerable in the
sense that D(〈1, ·〉), D(〈2, ·〉), . . . is an enumeration of deciders of the languages in L.

I Definition 9 (Sequence of Outputs, Convergence).
Let L be a language, and let s be a positive presentation of L. Let M be a Turing

machine. The sequence of outputs of M on s is m1,m2,m3, . . . such that

mi = M(〈s1, s2, . . . , si〉)

for all i ∈ N. Namely, mi is the output of M when executed on the input 〈s1, s2, . . . , si〉
which consists of the first i strings in the positive presentation s. If M does not halt on
this input, we write mi = ⊥.

We say that M converges to a number k ∈ N on s, and write M(s)→ k, if mi 6= ⊥
for all i ∈ N and there exists N ∈ N such that mi = k for all i > N .

If M does not converge to any number k, we say that M diverges on s.

Finally, the game itself is captured in the following definition.

I Definition 10 (Language Identification in the Limit, [8]). Let L be a set of languages over
an alphabet Σ, let L ∈ L, let I = (Li)i∈N be a computable indexing of L, and let M be a
Turing machine. We say that M identifies L in the limit with respect to indexing I if for any
positive presentation s of L, M(s)→ i for i ∈ N such that L = Li. We say that M identifies
L in the limit with respect to indexing I if M identifies every language in L.
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4 Language Identification in the Limit

We say that a set of languages L (or a language L) is identifiable in the limit if there
exists a Turing machine M and a computable indexing I of L such that that M identifies L
(or L) in the limit with respect to I.

I Remark 11. Because ∅ does not have any positive presentations, every Turing machine
identifies ∅ in the limit in a vacuous sense.

3 Some Simple Examples

I Example 12. The set L of all finite languages over an alphabet Σ is identifiable in the
limit.

Proof sketch. We define the learner M to be a TM as follows. Let L be the target language
and let s be a positive presentation of L. For any finite prefix s1, s2, . . . , sn of s, the learner
M will output M(〈s1, . . . , sn〉) = k such that Lk = {s1, . . . , sn}. Observe that because s is a
positive presentation, for every w ∈ L there exists a minimal index m = m(w) ∈ N such that
sm = w. Because L is finite, the value N = max{m(w) : w ∈ L} is a finite integer. For all
n ≥ N , the language Lk = {s1, . . . , sn} as above will contain all the strings in L, and only
strings in L. Thus, M(s)→ k where Lk = L as desired.

To complete the proof fomally, it is necessary to verify that the behavior of M as specified
above is indeed computable. That is, we need to show that there exists a computable indexing
(Li)∞i=1 of L such that for any finite set {s1, . . . , sn}, the mapping {s1, . . . , sn} 7→ k such that
Lk = {s1, . . . , sn} is a computable mapping. That is not difficult. J

I Example 13. The set L be the set of co-singleton sets, namely L = {N \ {n} : n ∈ N}.
Then L is identifiable in the limit.

Proof sketch. Using the same notation as in Example 12, the learner M will compute

c = min {i ∈ N : i /∈ {s1, . . . , sn}} ,

and then output an index k such that Lk = N \ {c}. Assume that the target language is
L = N \ {t} for some fixed t ∈ N. Let

N = max{m(s) : s ∈ N ∧ s < t},

and note that N is a finite integer. For all n ≥ N it holds that M(〈s1, . . . , sn〉) = t as desired,
because all the natural numbers smaller than t appear in the prefix s1, . . . , sn (by the choice
of N), and t doesn’t appear in the prefix because t /∈ L.

Finally, to complete the proof we note that there exists a computable indexing of L such
that the mapping c 7→ k such that Lk = N \ {c} is computable. Hence, M is a well-defined
Turing machine. J

I Remark 14. Language identification in the limit explicitly models only learning from
positive examples (“x is in L” – a “yes” instance), and the learner does not see negative
examples (“x is not in the language” – a “no” instance). Nonetheless, we can use the same
formalism more generally to also model learning functions and sequences. If X and Y are
finite or countable sets and f : X → Y is a function, we can model learning the function by
considering the identification in the limit of the language L = {(x, y) : x ∈ X ∧ y = f(x)}.
In particular, if Y = {0, 1}, we can think of examples of the form (x, 1) as “yes” instances,
and examples of the form (x, 0) as “no” instances. Additionally, because a sequence is simply
a function where the domain is the natural numbers, we can also use this identification in
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the limit to model a form of sequence learning (learning to complete an infinite sequence like
2, 3, 5, 7, 11, . . . from a finite number of examples). However, the presentation of the sequence
to the learner might not be in order (e.g., the learner is informed that “the 3rd item in the
sequence is 5” without necessarily being first informed about the previous items). y

4 Negative Result: Gold’s Theorem, Locking Sequences

I Definition 15 (Locking Sequence for a Language, [4]). Let L ⊆ Σ∗ be a language, let M be
a Turing machine, and let k ∈ N. We say that a finite sequence of strings s1, s2, . . . , sn ∈ Σ∗
is a locking sequence for L that locks M onto k if the following conditions hold:
(i) {s1, . . . , sn} ⊆ L, and
(ii) For any (possibly empty) finite sequence t1, t2, . . . , tm ∈ Σ∗, if {t1, . . . , tm} ⊆ L then

M(〈s1, . . . , sn, t1, . . . , tm〉) = k.

I Lemma 16 (Locking Sequence Lemma, [4]). Let L be a set of languages with a computable
indexing (Li)i∈N, let L ∈ L, and let M be a Turing machine. If M identifies L in the limit
with respect to (Li)i∈N then there exists a locking sequence for L that locks M onto k such
that L = Lk.

Proof. Assume for contradiction that there does not exists a locking sequence for L that
locks M onto any number k ∈ N such that Lk = L. We make two observations.
1. If there exists a locking sequence for L that locks M onto some number k, then it must

be that Lk = L. To see this, assume for contradiction that there exists a locking sequence
s for L that locks M onto k such that Lk 6= L. Let p be a positive presentation of L.
Then the concatenation s ◦ p is also a positive presentation of L. From the assumption
that s is a locking sequence, M(s ◦ p)→ k. Seeing as s ◦ p is a positive presentation for
L and Lk 6= L, this is a contradiction to the assumption that M identifies L in the limit.

2. For any finite sequence s of strings from L, there exists a finite sequence unlock(s) of
strings from L such that M(〈s〉) 6= M(〈s ◦unlock(s)〉). This is true because if there exists
a sequence s of strings from L that does not have a suitable sequence unlock(s), then s
would be a locking sequence for L, and therefore from the first observation it must be
that s locks M onto k such that L = Lk, in contradiction to the assumption that no such
locking sequence exists.

Now, Let p be a positive presentation of L. We will construct a positive presentation q for L
on which M diverges, which is a contradiction to the assumption that M identifies L in the
limit:

Listing 1 Construction of the sequence q

q ← empty sequence
for i = 1, 2, . . . :

q ← q ◦ (pi)
q ← q ◦ unlock(q)

Namely, the construction alternates between extending q with the next string from p,
and extending q with its own unlocking sequence. Note that:
(a) q is a positive presentation for L. That is, q is a well defined infinite sequence of strings,

all the strings in q are members of L (by the definitions of p and unlock(·)), and every
string in L appears in q at some point (because p is a positive presentation of L).
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6 Language Identification in the Limit

(b) M diverges on q. This is true because for each step i in the construction of q,

M(〈q〉) 6= M(〈q ◦ unlock(q)〉),

so the output of M changes infinitely many times when executing on the input q.
Taken together, (a) and (b) are a contradiction to the assumption that M identifies L in the
limit. J

It would appear that identification in the limit is a very generous model towards the
learner, in the sense that the learner gets infinitely many guesses. The learner is allowed to
make any finite number of mistakes, so long as it eventually converges onto the right answer.
Perhaps surprisingly, the following theorem shows that even simple collections of languages
are not identifiable in the limit.

I Definition 17. A set of languages is called transfinite if it contains all finite languages
over some alphabet Σ and at least one infinite language over Σ.

I Theorem 18 (Gold [8]). Every transfinite set of languages is not identifiable in the limit.

Proof. Let L be a transfinite set of languages, and assume for contradiction that there
exists a Turing machine M that identifies L in the limit with respect to some computable
indexing (Li)i∈N. Let L∞ ∈ L be an infinite language. From Lemma 16 there exists a
finite locking sequence s for L∞ that locks M onto k such that Lk = L∞. Let Ls be the
(finite) set of strings in s. Let s1 be the first string in s, and consider the infinite sequence
p = s ◦ (s1, s1, s1, . . . ). Note that p is a positive presentation for Ls. Because L is trasfinite,
Ls ∈ L, and therefore M identifies Ls in the limit. In particular, M(p)→ t such Lt = Ls.
Because Ls 6= L∞, t 6= k. This is a contradiction to s being a locking sequence that locks M
onto k. J

I Exercise 19. Show that L = {N \ {i}}∞i=1 ∪ {N} is not identifiable in the limit.

5 A Characterization of the Identifiable Sets of Languages

The proof of Gold’s theorem highlights the main problem that makes language identification
in the limit difficult to achieve: at some point, the learner might make up its mind that the
target language is some language L (e.g., if the learner has seen a locking sequence for L),
and from that point onward, it will not change its mind unless it sees a string that does not
belong to L. If the correct target language is actually a subset L′ ( L, then the learner will
fail to identify it. We call this phenomena over-generalization, because the learner fixates on
the solution L that is too general (too big a set), instead of identifying the correct solution
L′ that is more particular (is a smaller set).

The following theorem basically says that over-generalization is the only problem that
can make a set of languages not identifiable. A set of languages is identifiable if and only if
over-generalization can be avoided.

I Definition 20 (Telltale Set, [2]). Let L be a set of languages, and let L ∈ L. A finite set
of strings T ⊆ L is called a telltale set for L with respect to L if for any L′ ∈ L,

T ⊆ L′ =⇒ L′ 6⊂ L,

namely every language L′ ∈ L that is a strict subset of L does not contain T .

I Remark 21. ∅ is a telltale set of itself.
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I Theorem 22 (Angluin [2]). A a set of languages L over an alphabet Σ is identifiable in
the limit if and only if the following two conditions are satisfied:
(i) Every language L ∈ L has a telltale set with respect to L, and furthermore
(ii) The telltale sets are recursively enumerable in the following sense. There exists a

computable indexing (Li)i∈N of L and a Turing machine T such that for any i ∈ N, if
T is executed with input 〈i〉 then T enumerates a set Ti that is a telltale set for Li.

Proof.
⇐=. We assume that L satisfies conditions (i) and (ii) and prove that L is identifiable in the
limit. Let (Li)i∈N be the computable indexing of L from condition (ii). We write T (n)

i to
denote the subset of the telltale set Ti that is printed during the first n steps of executing T
on input 〈i〉. Note that the mapping (i, n) 7→ T

(n)
i is computable. The Turing machine M

that identifies L operates as follows.

Input: a finite sequence of strings s1, s2, . . . , sn.

for k = 1, 2, . . . , n:
if T

(n)
k ⊆ {s1, . . . , sn} ⊆ Lk : . T

(n)
k is a subset of the telltale set for Lk

output k and halt

output 0 and halt

Listing 2 A Turing machine M that identifies L in the limit.

Let L ∈ L, and let s be a positive presentation of L. Let j ∈ N be the minimal number such
that Lj = L. We show that M(s)→ j. Let Tj be the telltale set enumerated for Lj by T .
Because Tj ⊆ Lj = L and s is a positive presentation of L, it holds that Tj ⊆ {s1, . . . , sn}
for all n large enough, and therefore T (n)

j ⊆ {s1, . . . , sn} for all n large enough. We conclude
that for k = j the condition

T
(n)
k ⊆ {s1, . . . , sn} ⊆ Lk (∗)

is satisfied for all n large enough.
To prove that M(s)→ j, it suffices to show that for all k < j, condition (∗) is satisfied

at most finitely many times. Fix a value k < j. Fix N large enough such that T (n)
k = Tk

for all n ≥ N (N exists because Tk is finite). Assume that this value of k satisfies (∗) for
some fixed n ≥ N . Then Tk ⊆ {s1, . . . , sn} (because (∗) is satisfied and T (n)

k = Tk), and also
{s1, . . . , sn} ⊆ L (because s is a presentation of L). Hence, Tk ⊆ L. Because Tk is a telltale
set for Lk, this implies that L 6⊂ Lk. Furthermore, from the minimality of j, L 6= Lk. Hence,
there exists a string w such that w ∈ L and w /∈ Lk. Because s is a positive presentation of
L, there exists an index q such that sq = w. Therefore, this value of k does not satisfy (∗)
whenever n ≥ q. Thus, we have shown that j is the minimal number that satisfies (∗) for all
n large enough, and therefore M(s)→ j. This shows that L is identifiable in the limit.

=⇒. We assume that L is identifiable in the limit and prove that L satisfies condition (ii),
and this implies that condition (i) is also satisfied. Let M be a Turing machine that identifies
L with respect to some computable indexing (Li)i∈N of L.

First, we define a Turing machine EnumerateFiniteSequences that on input 〈i〉
enumerates all the finite sequences of strings in Li. It uses D, the Turing machine for the
computable indexing (Li)i∈N such that s ∈ Li ⇐⇒ D(〈i, s〉) = 1.
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8 Language Identification in the Limit

EnumerateFiniteSequences(i): . enumerates finite sequences of strings from Li

for n = 0, 1, 2, ...:
S ← ∅
for s in first n strings of Σ∗:

if D(i, s) = 1:
add s to S

for q in Helper(S, n):
print q

Helper(S, n): . enumerates all sequences of length ≤ n from finite set S

Q← ∅
if n = 0:

add () to Q . () denotes an empty sequence
else:

for q in Helper(S, n− 1):
add q to Q

for s in S:
add q ◦ (s) to Q

return Q

Listing 3 A Turing machine that enumerates all the finite sequences of strings from a langauge Li.

Second, we construct the following Turing machine to enumerate the telltale sets as
desired. The construction uses the fact that for every i ∈ N it is possible to compute the
members p1, p2, . . . of a positive presentation p for Li (by enumerating Σ∗ and using D to
filter out strings that do not belong to Li).

T(i):
q ← ()
m0 ←M(q)
for j = 1, 2, 3, ...:

for f in EnumerateFiniteSequences(i):
mj ←M(q ◦ f)
if mj 6= mj−1:

for s in f ◦ (pj):
print s

q ← q ◦ f ◦ (pj)
break . continue to next j

Listing 4 A Turing machine that enumerates a telltale set Ti for language Li.

Third, we argue that for any i ∈ N, T prints only a finite number of strings when executed
on input 〈i〉. Assume for contradiction that T prints an infinite number of strings for some
i ∈ N. Then the sequences q and m1,m2, . . . (that are constructed during the computation)
are both infinite. However, observe that q contains only members of Li, and it contains all
members of Li (because in each step j we append pj to q). Hence, q is a positive presentation
of Li. But from the construction of mj , it holds that mj 6= mj−1 for all j ∈ N. Hence, M(q)
diverges, in contradiction to M identifying Li in the limit. Thus, the set of strings Ti that T
prints on input 〈i〉 is finite.

Fourth, let t be the finite sequence of all the strings printed out when executing T on
〈i〉. We argue that t is a locking sequence for Li that locks M onto some index k such that
Lk = Li. Observe that there exists no nonempty finite sequence f of strings from Li such
that M(〈t ◦ f〉) 6= M(〈t〉), because if such a sequence f existed then T would have eventually
enumerated it and then printed the strings in f after it printed t, which is a contradiction
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to our choice of t. This implies that t is a locking sequence for L that locks M onto some
index k = M(〈t〉). To see that Lk = Li, note that t ◦ p is a positive presentation of Li, and
so M(t ◦ p)→ j such that Lj = Li. In particular, there exists some finite prefix f of p such
that M(〈t ◦ f〉) = j, and so k = M(〈t〉) = M(〈t ◦ f〉) = j, and Lk = Lj = Li.

Finally, we argue that the set Ti of strings in t is indeed a telltale set for Li. Clearly,
Ti ⊆ Li, and from our third argument it is finite. Assume for contradiction that there exists
m ∈ N, m 6= i, such that Ti ⊆ Lm ( Li. Let w be a positive presentation of Lm. Then t ◦ w
is also a positive presentation of Lm. Hence M(t ◦ w) → m, in contradiction to t being a
locking sequence for Li that locks M onto i.

Note that in the corner case Li = ∅, it holds that ∅ is a telltale set for Li, and indeed T
does not print out any strings on input 〈i〉. J

6 Discussion

Golds’s theorem shows that in some cases, identification in the limit is not possible because of
over-generalization, and Angluin’s theorem tells us that over-generalization is essentially the
only type of problem that can make identification in the limit not possible. However, there
are good reasons to believe that when humans learn in the real world, over-generalization is
a difficulty that is readily and routinely overcome. The motto is:

Absence of evidence can be evidence of absence.

Let’s see a few examples that clarify this idea:

1. Lunch (silly example). Alice and Bob eat lunch together every day at the cafeteria,
which serves three dishes: pasta, soup, and salad. Alice notices that Bob always ordered
the pasta or the soup, but he never ordered the salad. Over time, she develops an
expectation that Bob will order the pasta or the soup. If someone asks her if she thinks
Bob will order salad tomorrow, she will say that it is unlikely. Alice uses the absence of
evidence (no cases of Bob ordering a salad) as evidence of absence (evidence that salad is
not a member of the set of dishes that Bob is likely to order). This kind of reasoning is
common and can work well in the real world, but the framework of language identification
in the limit doesn’t fully capture this (for identification in the limit, there is no difference
between the case where Bob ordered the pasta and the soup a single time each, versus
the case where Bob ordered each of them a million times).

2. Scientific induction. In the scientific method, scientists select a particular hypothesis
out of a seemingly infinite set of possible hypotheses. In particular, they appear quite
good at avoiding over-generalization. Consider the choice between the hypothesis (a) steel
balls fall downwards, versus the more general hypothesis (b) steel balls fall downwards,
except on nights with a full moon in which they can fall down or float up into the sky (the
predictions of (a) are a strict subset of the predictions of (b)). Scientists do overgeneralize
sometimes, but they also appear very good at avoiding over-generalization, and at using
absence of evidence as evidence of absence (absence of evidence for a hypothesis counts
against it).

3. Language acquisition. When children learn their first language, they often go through
stages of incorrect over-generalization, where they make semantic, syntactic and morpho-
logical mistakes. Following are some examples (mistakes are marked with “*” signs).
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10 Language Identification in the Limit

Semantic mistakes:
Using *doggie to refer to all biggish animals (e.g., bears and horses).
Using *kitten to refer to all felines, including lions and tigers.

Morphological mistakes:
Saying *I goed to the store with mommy. Should be: went.
Similarly, using *knowed, *eated, *gived, *sitted instead of knew, ate, gave, sat.
Saying *Auntie is a good cooker. Should be: cook.

Syntactical mistakes:
Saying *Don’t giggle me. Should be: don’t make me giggle.
Saying *Don’t say me that. Should be: Don’t say that to me.

All these examples can be understood as cases where the child is using a rule or word
that exists in English in a situation where it is not applicable. For example:

Walk, walked −→ go, *goed
Build, builder −→ cook, *cooker
I eat, don’t eat me −→ I giggle, *don’t giggle me

These mistakes are interesting because they seem to satisfy the following three conditions.
(i) Children probably reach these incorrect generalizations on their own. They don’t

hear adults making mistakes like *goed or *eated very often.
(ii) It appears that children do not get a lot of direct negative feedback informing them

that these are mistakes, and when they do get feedback, they tend to ignore it.
This phenomena is called poverty of the stimulus, and there is a wealth of literature
in linguistics that documents and discusses it.

(iii) Children eventually stop making these types of mistakes, despite the lack of negative
feedback.

It appears probable that at least part of the mechanism that allows children to evetually
stop making these mistakes operates along the following lines: walk and walked are both
common, kick and kicked are both common – but *goed is not common even though go is
common. By picking up on these frequencies, children can identify the lack of evidence in
favor of *goed being a valid verb form, and interpret that absence of evidence as evidence
that *goed is in fact not a valid form.

The discussion above suggests that it would be valuable to consider a model of learning in
which absence of evidence can count as evidence of absence, and that such a model could
capture instances of learning that are common in the real world. As we will see, this can be
done using probability.

Beyond that, another issue ignored (by design) in the model of identification in the limit
is the issue of resources. Because real-world learners have limitations on their computational
space and runtime complexities, as well as the amount of training data that they receive, it
makes sense to ask what can be learned efficiently? (namely, using a reasonable amount of
time, space, and data).

To summarize, the wish list for our next definition of learning is:

1. Probabilistic (absence of evidence is evidence of absence).
2. Account for time, space and data complexity.

In the next lecture we will present the PAC definition, which satisfies this wish list.
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7 Bibliographic Notes

We have mostly followed the presentation of Gierasimczuk and de Jongh [6] and of Angluin [2].
See also the survey by Angluin and Smith [3], and the monograph by Osherson, Stob and
Weinstein [13].

Gold [8] uses the terminology arbitrary text instead of positive presentation (which is
used by Angluin [2]). Some authors (including Angluin [2]) use the terminology inductive
inference or inferring a language from positive data instead of identification in the limit.

Most authors define the learner and the sequence of outputs in a different manner then we
did. In Definition 9 we considered an ordinary Turing machine that is executed repeatedly on
finite prefixes of the positive presentation s, producing a sequence of outputs mi. In contrast,
most sources consider a multi-tape Turing machine where the infinite positive presentation
s is written sequentially on a special input tape, and for each i the Turing machine reads
si, and then prints out mi to a special output tape before advancing to the next i. Their
definition has the advantage that the Turing machine is more efficient because it doesn’t start
the computation from scratch for each i. A disadvantage of their definition that it requires
a more complex setup (e.g., a multi-tape Turing machine, sometimes with special request
and guess states, etc.). Because in the current note we are not interested in computational
complexity, we used the simpler definition.

Theorem 18 is due to Gold [8], but we presented a simpler proof based on [4].
The linguistics literature about language acquisition, over-generalization, poverty of the

stimulus, and their (possible) connections to Gold’s theorem is vast (and I am not an expert
on it); see e.g., [15, 9, 5, 14, 12, 10, 11]. Most of the examples of over-generalization in
childrens’ linguistic production were taken from [1].
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