
UC Berkeley
CS 294-220, Spring 2021

Jonathan Shafer

Unit 2

Probably Approximately Correct:
A Probabilistic Definition of Learning

1 The PAC Definition

In this section we present the Probably Approximately Correct (PAC) definition of learning.
We will see a few other definitions throughout the course, but this definition (and a variant
of it called agnostic PAC) will be our central definition.

PAC is a probabilistic definition of learning. Two main motivations for taking a proba-
bilistic approach are that this allows us to:

Formally make inferences in which “absence of evidence is evidence of absence,” in the
sense discussed in the previous unit.
Model learning in the presence of uncertainly and noise.

Additionally, the PAC definition allows us to model learning with finite amounts of data and
computational resources (instead of infinite positive presentations, and infinite computations
that only converge in the limit).

1.1 Components of a Learning Problem
In a learning problem, a learner is attempts predict the specific labels y ∈ Y that correspond
to specific instances x ∈ X . For instance, given measurements of the temperature and
humidity today (which together constitute a single instance), predict whether it will rain
tomorrow (this the label).

More fully, the learner is attempting to learn an unknown function f : X → Y . To do so,
it is given example input-output pairs (x, f(x)), where x is chosen randomly from X . The
setting includes the following components:

X – a set called the domain or the instance space.
Y – a set called the co-domain or the label space.
The unknown system:
f : X → Y – a target function.
D – a distribution over X .

S – a random variable called the sample or the training set. This is the data presented
to the learner. There are a number of reasonable ways in which the data might
be generated, but we will mostly consider the following setting: S is a tuple of m
ordered pairs

(
(x1, y1), . . . , (xm, ym)

)
, such that for every i ∈ [m], xi ∈ X is sampled

independently according to D, and yi = f(xi) ∈ Y. The assumption that the xi’s are
sampled independently from D is called the i.i.d. assumption.
Learner – a (possibly randomized) algorithm that takes S as input and produces a
hypothesis function h : X → Y as output. Also called a learning algorithm.
LD,f (h) – a loss function that measures how well the hypothesis h is able to predict
the labels assigned by f with respect to the distribution D. We will generally assume

1

2 Probably Approximately Correct Definition

Figure 1 Components of the PAC model.

that LD,f (h) = E
x∼D

[`(f(x), h(x))] for some function `. In particular, we will mostly
focus on the ‘0-1 loss,’ where `(y, y′) = 1(y 6= y′), which yields

LD,f (h) = Px∼D [h(x) 6= f(x)] .

However, there are many other reasonable choices for a loss functions. For example, if
Y = R we can choose `(f, h, x) = (f(x) 6= h(x))2, which yields the expected square
error loss, LD,f (h) = E

x∼D

[
(h(x)− f(x))2].

All details of the setting are known to the learner except for the target function f and
the distribution D. The learner’s objective is to output a hypothesis h such that LD,f (h) is
as small as possible.

I Remark 1.
The unknown distribution D plays a double role: it determines how the sample S is
generated, and it also defines the loss function LD,f used to evaluate the performance
of the learner.
The current setting does not meet our objective of dealing with uncertainty (e.g.,
noisy labels). We have made a fairly strong assumption about the unknown system
– that the label y is a deterministic function of x. Next lecture we will see how this
assumption can be relaxed.

1.2 PAC Definition – First Attempt
We want the learner to find a hypothesis h that has loss as small as possible. It might seem
desirable to require that the learner find h such that LD,f (h) = 0, namely h = f on all points
in the support of D. However, there are two issues with this:

The learner only gets a limited amount of information about the target function f ,
because it gets a sample that only contains a finite number m of input-output pairs.
Therefore we generally cannot hope for the learner to reconstruct f precisely. Instead,
we can go for the next best thing, which is to require that LD,f (h) ≤ ε for some small
positive ε. That is, we require that h be approximately correct.

CS 294-220, Spring 2021 3

Moreover, we can make ε > 0 arbitrarily small. The more data the learner gets, the
better its predictions can be. That is, we require that for every ε > 0 there exists
m ∈ N such that if the algorithm receives a sample of size m then it will output h such
that LD,f (h) ≤ ε. (Basically, LD,f (h)→ 0 as m goes to infinity, with upper bounds
on LD,f (h) also for finite sample sizes m and not only in the limit.)
Seeing as the sample is generated randomly according to D, there is always a possibility
that the learner will be unlucky and get a ‘bad’ sample. For instance, there is a nonzero
probability that the sample S =

(
(x1, y1), . . . , (xm, ym)

)
will have x1 = x2 = · · · = xm,

and so the learner only receives information on a single input-output pair, even though
the sample is of size m > 0. Therefore, we cannot hope for the learner to always
achieve low loss. However, because the probability of getting a bad sample is low, we
can require that it will probably succeed, i.e., the learner achieve low loss with high
probability.

Combining these two considerations, we get the probably approximately correct (PAC)
definition of learning. Following is a first (problematic) attempt at formalizing this notion.

I Definition 2 (PAC Learning – Naïve Version). Let X and Y be sets. We say that a (possibly
randomized) algorithm A is a naïve probably approximately correct learner for functions
X → Y if for any precision parameter ε ∈ (0, 1) and confidence parameter δ ∈ (0, 1) there
exists a sample size m ∈ N such that for every target function f : X → Y and every
distribution D over X , if A receives as input the parameters ε and δ and a sample S such
that S =

(
(x1, f(x1)), . . . , (xm, f(xm))

)
where x1, . . . , xm are sampled independently from

D, then A halts and outputs a hypothesis h : X → Y that with probability at least 1− δ has
loss LD,f (h) ≤ ε.

I Notation 3. Let X and Y be sets, D be a distribution on X and f : X → Y be a function.
We write z ∼ (D, f) to denote that z is a random variable such that z = (x, y) where x ∈ X
is sampled according to D and y = f(x).

The requirement of naïve PAC learning can be summarized concisely as

PS∼(D,f)m [LD,f (h) ≤ ε] ≥ 1− δ, (1)

where h = A(ε, δ, S), and the probability is over the randomness of the sample and of the
random coins used by the algorithm A (if A is a randomized algorithm).

The number m in the definition is a number of examples that depend on ε and δ and is
sufficient to guarantee that the algorithm satisfies (1).

I Definition 4. Let A be an algorithm that is a naïve PAC learner for functions X → Y,
for some sets X ,Y. The sample complexity of A is a function m : (0, 1)2 → N such that for
every ε, δ ∈ (0, 1), the number m(ε, δ) is the minimal sample size for which A satisfies (1).

Let’s see what we can say about this naïve definition. As an example, observe that if X
is finite then learning is possible according to Definition 2.

B Claim 5. Let X and Y be nonempty sets and assume that X is finite. There exists
an algorithm A that naïve PAC learns the functions X → Y and has sample complexity
m(ε, δ) ≤

⌈
|X |+ln(1/δ)

ε

⌉
. y

The learning algorithm simply ‘memorizes’ the sample. Namely, given a sample S =(
(x1, y1), . . . , (xm, ym)

)
, it outputs the following hypothesis h. For every x ∈ X , if there

UC Berke ley

4 Probably Approximately Correct Definition

exists i ∈ [m] such that x = xi, then h(x) = yi∗ where i∗ = min{i ∈ [m] : xi = x}.
Otherwise, h(x) = y′ for some arbitrary fixed y′ ∈ Y.

The idea of the proof is simple: If we take a number of samples that is linear in |X |, then
we will see the correct labels for nearly all of X , except possibly some small fraction of weight
at most ε, and so by memorizing these labels we achieve loss less than ε.

Proof of Claim 5. Fix ε > 0 and δ > 0, a distribution D, and a target function f . We show
that if the memorization algorithm described in the previous paragraph receives a sample S
of size m =

⌈
|X |+ln(1/δ)

ε

⌉
, then it outputs h such that PS∼(D,f)m [LD,f (h) > ε] < δ.

We say that a set X ⊆ X is bad if D(X) > ε and ∀x ∈ X : h(x) 6= f(x). Note that
LD,f (h) = Px∼D [h(x) 6= f(x)] = D({x ∈ X : h(x) 6= f(x)}), so

LD,f (h) > ε ⇐⇒ ∃X ⊆ X : X is Bad.

Hence,

PS∼(D,f)m [LD,f (h) > ε] = PS [∃X ⊆ X : X is Bad]

= PS

 ⋃
X⊆X

{X is Bad}


≤
∑
X⊆X

PS [X is Bad] . (union bound)

Let Sx = {xi : i ∈ [m]} ⊆ X and observe that if X ∩ Sx 6= ∅ then X is not bad, because if
x ∈ Sx then h will memorize the correct label for x and then h(x) = f(x).

Next, we show that for any X ⊆ X , it holds that PS [X is Bad] < δ
2|X| . This suffices to

complete the proof, because it implies that
∑
X⊆X PS [X is Bad] < δ. Notice that for any

X ⊆ X , if D(X) ≤ ε then X is never bad, and if D(X) > ε then

P
S∼(D,f)m

[X is Bad] ≤ PS [X ∩ Sx = ∅]

= PS

 ⋂
i∈[m]

{xi /∈ X}

 =
∏
i∈[m]

PS [xi /∈ X] (xi’s are i.i.d.)

≤
∏
i∈[m]

(1− ε) = (1− ε)m ≤ e−εm.

But

e−εm <
δ

2|X |
⇐⇒ m > −

ln
(

δ
2|X|

)
ε

=
|X | ln (2) + ln

(1
δ

)
ε

,

and so taking m =
⌈
|X |+ln(1/δ)

ε

⌉
>
|X | ln(2)+ln(1

δ)
ε is sufficient to ensure that e−εm < δ

2|X| , as
desired. J

The result of Claim 5 is not very surprising. Clearly, if we see the labels for nearly all
x ∈ X then we can perform well on these x’s. But this only captures memorization, which
is a rudimentary (and quite boring) type of learning. Memorization performs poorly in
more realistic situations where the training set contains only a small part of X . Broadly
speaking, in learning theory we are more interested in learners that can generalize – can use
the instances received in the training sample in order to make good predictions about new,
as yet unseen instances not present in the training sample.

CS 294-220, Spring 2021 5

I Definition 6. Let S =
(

(x1, y1), . . . , (xm, ym)
)
be a sample and h : X → Y be a hypothesis.

The empirical loss of h with respect to S is LS(h) = 1
m

∑
i∈[m] `(yi, h(xi)), which in the case

of the 0-1 loss is

LS(h) = 1
m

∑
i∈[m]

1(yi 6= h(xi)) = |{i ∈ [m] : h(xi) 6= yi}|
m

.

The out-of-sample loss of h with respect to a distribution D and target function f is given by
E
x∼D

[`(f(x), h(x)) | x /∈ Sx], which for the 0-1 loss is

Px∼D [f(x) 6= h(x)) | x /∈ Sx] ,

where Sx = {x1, . . . , xm}.

I Remark 7. To distinguish LD from the empirical loss LS and from the out-of-sample loss,
we will sometimes refer to LD as the true loss or the population loss.

The memorization algorithm achieves a perfect empirical loss of LS(h) = 0, but its
out-of-sample loss is basically the same as what we would expect if we simply assigned labels
arbitrarily or by chance – about as poor as possible.

Our goal is to achieve generalization, which can be formalized either as saying that
|LS(h)− LD,f (h)| is small, or as saying that the out-of-sample loss is small. Unfortunately,
as we will see in the next section, this is not possible in the general case.

1.3 No Free Lunch
“[T]here is nothing in any object, considered in itself, which can afford us a reason for
drawing a conclusion beyond it; and [...] even after the observation of the frequent or constant
conjunction of objects, we have no reason to draw any inference concerning any object beyond
those of which we have had experience;”
David Hume, in A Treatise of Human Nature (1739), Book I, Part III, Section XII.

In Definition 2 we did not make any assumptions on the target function f – it could be
any function whatsoever. Therefore, the values f(xi) that the learner receives for xi’s in
the sample convey no information at all about the value f(x) for any x not in the sample.
Therefore, neither memorization or any other algorithm can perform better than chance on
out-of-sample instances. Formally:

I Theorem 8 (No Free Lunch, Wolpert [6]). Let X be a nonempty finite set, Y = {0, 1}, and
F be the set of all functions from X → Y. Let U be the uniform distribution over X . Then
for any learning algorithm A for functions X → Y and any m ∈ N,

1
2 −

m

2|X | ≤ Ef∈F ES∼(U,f)m [LU,f (h)] ≤ 1
2 + m

2|X | ,

where h = A(S), and f is sampled uniformly from F .

Proof. First, note the following simply case of the law of total expectation. Let A and B
be two random variables in a discrete joint probability space, let g(A,B) be a real-valued
function, and assume that that E [|g(A,B)|] ≤ ∞. Then

E [g(A,B)] =
∑
a

∑
b

P [A = a ∧ B = b] g(a, b) =
∑
a

P [A = a]
∑
b

P [B = b |A = a] g(a, b)

= EA [EB [g(A,B) |A]] .

UC Berke ley

6 Probably Approximately Correct Definition

And so from symmetry, EA [EB [g(A,B) |A]] = E [g(A,B)] = EB [EA [g(A,B) |B]].1

Second, define that a sample S =
(

(x1, y1), . . . , (xm, ym)
)
and a function f are consistent

if yi = f(xi) for all i ∈ [m], and likewise S is self-consistent if there exists some function
f such that S and f are consistent. Observe that in the theorem we have two random
variables f and S in a joint finite probability space, and we are interested in the expectation
of the function g(f, S) = LU,f (A(S)). The marginal distribution of f is uniform over F , the
marginal of S is uniform over all self-consistent samples, and the joint distribution is such
that f and S are always consistent.

Third, fix f ∈ F , and let Sx denote the subset of X that appears in S. Then

E
S∼(U,f)m

[LU,f (h)] = E
S∼(U,f)m

[
1
|X |

∑
x∈X

1(f(x) 6= h(x))
]

= E
S∼(U,f)m

 1
|X |

∑
x∈X\Sx

1(f(x) 6= h(x))

+ E
S∼(U,f)m

[
1
|X |

∑
x∈Sx

1(f(x) 6= h(x))
]
.

(2)

Consider each item in (2) separately when taking an expectation over f . For the first item,
invoking the law of total expectation we obtain

Ef∈F ES∼(U,f)m

 1
|X |

∑
x∈X\Sx

1(f(x) 6= h(x))

 = 1
|X |

ES∼(U,f)m

 ∑
x∈X\Sx

E
f∈F

[
1(f(x) 6= h(x))

∣∣∣ S]


The random variable f |S is uniform over all functions f ∈ F that are consistent with S.
in particular, for any fixed x ∈ X \ Sx, the value f(x) is uniform over Y, and therefore
Ef∈F

[
1(f(x) 6= h(x))

∣∣∣ S] = 1
2 . Hence,

1
|X |

ES∼(U,f)m

 ∑
x∈X\Sx

E
f∈F

[
1(f(x) 6= h(x))

∣∣∣ S]
 = 1

2 ·
|X | − |Sx|
|X |

= 1
2 −

|Sx|
2|X | .

For the second item in (2), note that

0 ≤ Ef∈F ES∼(U,f)m

[
1
|X |

∑
x∈Sx

1(f(x) 6= h(x))
]
≤ |Sx|
|X |

.

Finally, plugging these expressions back into (2) we obtain

1
2 −

|Sx|
2|X | ≤ ES∼(U,f)m [LU,f (h)] ≤ 1

2 + |Sx|2|X | .

Noting that |Sx| ≤ m completes the proof. J

I Exercise 9. In the setting of Theorem 8, for any algorithm (like the memorization algorithm)
that guarantees that LS(h) = 0, compute an exact expression for Ef∈F ES∼(U,f)m [LU,f (h)]
as a function of m and |X |.

1 This is true for general measures by Fubini’s Theorem, which states that under mild conditions,∫
X×Y

g(x, y)d(x, y) =
∫

X

(∫
Y

g(x, y)dy
)

dx =
∫

Y

(∫
X

g(x, y)dx
)

dy.

CS 294-220, Spring 2021 7

Hence, without any assumption on the target function f , it doesn’t matter which learning
algorithm we choose, if the sample size is small relative to |X | the the expected loss would
approximately equal 1

2 , which is the same as it would be if we guessed the labels at random.
In particular, as the following corollary shows, naïve PAC learning is not possible unless the
sample size is linear in X .

B Claim 10 (Markov’s Inequality). Let X be an integrable non-negative real-valued random
variable. Then for any t > 0, P [X ≥ t] ≤ E[X]

t .

Proof.

P [X ≥ t] = E [1(X ≥ t)] (definition of Lebesgue integral)

≤ E
[(

X

t

)
1(X ≥ t)

]
(if X ≥ t > 0 then X

t
≥ 1)

=
E [X · 1(X ≥ t)]

t

≤ E [X]
t

. (X ≥ 0 ⇒ X ≥ X1(X ≥ t)

⇒ E [X] ≥ E [X1(X ≥ t)]) J

I Corollary 11. Let X be a nonempty finite set and Y = {0, 1}. The following holds with
respect to the uniform distribution U over X . For any learning algorithm A for functions
X → Y, there exists a function f : X → Y such that if A receives a sample of size m ≤ |X |2
from U labeled according to f then A is a poor naïve PAC learner in the sense that

PS∼(D,f)m

[
LU,f (h) ≥ 1

8

]
≥ 1

7 .

Proof. Fix a learning algorithm A. From Theorem 8 there exists a function f such that

ES∼(U,f)m [LU,f (h)] ≥ 1
2 −

m

2|X | ≥
1
4

For h = A(S). Let q denote the accuracy of h with respect to f , i.e., q = 1− LU,f (h). From
Markov’s inequality,

PS∼(U,f)m

[
q ≥ 7

8

]
≤ 8 · ES [q]

7 = 8 (1− ES [LU,f (h)])
7 ≤

8
(
1− 1

4
)

7 = 6
7 .

In other words,

1
7 ≤ 1− PS

[
q ≥ 7

8

]
= PS

[
q <

7
8

]
= PS∼(U,f)m

[
LU,f (h) > 1

8

]
. J

Hence, if the domain is infinite, naïve PAC learning is impossible:

I Corollary 12. Let X be an infinite set and Y = {0, 1}. Then there does not exist an
algorithm that naïve PAC learns the functions X → Y.

Proof. Assume for contradiction that A is a leaning algorithm that naïve PAC learns the
functions X → Y. Then in particular there exists m ∈ N such that for all distributions D
and target functions f , h = A(S) satisfies PS∼(D,f)m [LD,f (h) ≤ 1/10] ≥ 9/10 where S is a
sample of size m taken from D and labeled according to f . Fix X ⊆ X such that |X| = 2m,
and let U be the uniform distribution on X. By Corollary 11, there exists a target function
f such that PS∼(U,f)m [LU,f (h) ≥ 1/8] ≥ 1/7, a contradiction to the previous inequality. J

UC Berke ley

8 Probably Approximately Correct Definition

The last corollary suggests that the definition of naïve PAC learning might be too strong
(be too hard to achieve), because there are many examples in the real world where it appears
to be possible to generalize well when learning over an infinite domain. For example, spam
filters are fairly good at classifying whether an email is spam or ham, even though the
suitable domain X (the set of all possible emails) is infinite.

1.4 A Better PAC Definition: Incorporating Inductive Bias
In the previous section we presented one possible formalization of Hume’s observation,
showing that if we do not assume anything about the unknown system then we cannot
generalize from instances that appear in the sample to unseen instances. Therefore, it appear
that successful generalization requires making more assumptions about the unknown system.
These assumptions are called inductive bias, because the learner has an a-priori preference
for (or bias in favor of) some hypotheses over other hypotheses.

One example is the preference in science for simple hypotheses. All else being equal,
scientists will usually prefer a simple hypothesis over a more complex one, even if they both
fit the evidence equally well. This bias is known as Occam’s razor, and we will revisit it later
on in the course.

As another example, consider the following experiment conducted by Gracia and Koelling [1]
which explored the learning proclivities of rats. They exposed rats to two types of stimuli,
an audiovisual stimulus, and a gustatory stimulus (food). For each type of stimulus, they
conducted an experiment where they subjected rats to one of three unpleasant conditions:
electric shock, a toxin, or x-ray radiation (both the toxin and the radiation cause nausea).
They found that the rats can learn to associate:

The the electric shock with the audiovisual stimulus, but not with the food.
The nausea (toxin or the x-ray) with food, but not with the audiovisual stimulus.

Namely, when reacting to nausea, rats seem to prefer hypotheses related to food, and to avoid
hypotheses related to audiovisual stimulus. This is an inductive bias. Similarly, when reacting
to physical trauma (electric shock), rats seem to prefer hypotheses related to audiovisual
stimulus, and disfavor hypotheses related to food.

Notice that in Corollary 11 we saw that even if we know exactly what the unknown
distribution D is (specifically, if we know that it is the uniform distribution over X), we
still cannot generalize well. Therefore, a reasonable approach to inductive bias is to make
assumptions on the target function f . In particular, a natural assumption which we will
explore in depth, is that f belongs to some subset, or hypothesis class, H ⊆ F , where F is
the set of all functions from X → Y. We will see that if H is simple in some sense, or has
some structure, then generalization is indeed possible.

Formally, adopting the assumption that f ∈ H for some class H ⊆ F yields the following
definition of learning.

I Definition 13 (PAC Learning, Valiant [5]). Let X and Y be nonempty sets, let F be the
set of all functions from X → Y, and let H ⊆ F be a class of functions. We say that a
(possibly randomized) algorithm A is a probably approximately correct (PAC) learner for H
if there exists a sample complexity function m : (0, 1)2 → N such that for every precision
parameter ε ∈ (0, 1), every confidence parameter δ ∈ (0, 1), every target function f ∈ H, and
every distribution D over X , if A receives as input the parameters ε and δ and a sample S of
size m = m(ε, δ) such that S =

(
(x1, f(x1)), . . . , (xm, f(xm))

)
where x1, . . . , xm are sampled

independently from D, then A halts and outputs a hypothesis h ∈ F that with probability at
least 1− δ (over the sample S and the randomness of A) has loss LD,f (h) ≤ ε.

CS 294-220, Spring 2021 9

We say that a class H ⊆ F is PAC learnable if there exists an algorithm that is a PAC
learner for H.

This definition is similar to Definition 2, the difference being that we assume that f ∈ H.
This is called the realizability assumption. (We have also explicitly included the sample
complexity function m(ε, δ) instead of writing “∀ε∀δ ∃m,” but that is purely a stylistic issue.)

1.5 Finite Hypothesis Classes are PAC Learnable
Perhaps the simplest assumption to make about the hypothesis class H is that it is finite.
We now show that this suffices to ensure PAC learnability, even if the domain is infinite.

I Lemma 14. Let X and Y be (finite or infinite) nonempty sets, and let H be a finite subset of
the functions X → Y. Then H is PAC learnable with sample complexity m(ε, δ) =

⌈
ln(|H|/δ)

ε

⌉
.

The idea is similar to that of Claim 5, which showed that naïve PAC learning is possible
for finite domains using the memorization algorithm. However, observe that the memorization
algorithm does not satisfy Lemma 14. Intuitively, in order to avoid the no-free-lunch theorems,
we need an algorithm which utilizes inductive bias, namely, which uses the assumption that
f ∈ H to its advantage – but memorization doesn’t do this. More concretely, Corollary 11
states that for any algorithm A (including a memorization algorithm), there exists a target
function ffail-A for which the algorithm A fails, and so in particular A is a not a PAC learner
for the finite class H = {ffail-A}. To avoid this issue, we need to design our algorithm A in a
manner that depends on the class H so that ffail-A /∈ H. Thus, under the assumption that
the target function f ∈ H, we know that A will not be executed with the target function
f = ffail-A, and so it is possible for A to succeed.

How can we design a learner A that uses the assumption that f ∈ H, and in particular
ensures that ffail-A /∈ H? An approach called empirical risk minimization (ERM) does the
trick.

ERMH(S):
find h ∈ H such that LS(h) = 0
output h

Algorithm 2 The empirical risk minimization algorithm. We assume that H is a class of functions
and S is a sample. From the realizability assumption, there exists at least one hypothesis h ∈ H
such that LS(h) = 0. If there are multiple such hypotheses, the algorithm chooses one of them
arbitrarily.

We can think of ERMH as a constrained version of the memorization algorithm. It still
outputs a hypothesis h such that h(xi) = yi for all xi in the sample, but in addition it
satisfies the constraint that h ∈ H.

The proof is very similar to that of Claim 5.

Proof of Lemma 14. Fix a finite class H, a target function f ∈ H, parameters ε > 0 and
δ > 0, and a distribution D. We show that

PS∼(D,f)m [LD,f (ERMH(S)) > ε] < δ

for m =
⌈

ln(|H|/δ)
ε

⌉
.

UC Berke ley

10 Probably Approximately Correct Definition

Let h ∈ H. We say that the sample S is bad for h if LS(h) = 0 and LD(h) > ε. Notice
that if LD(ERMH(S)) > ε, then S is bad for the hypothesis h = ERMH(S). Hence,

PS∼(D,f)m [LD,f (ERMH(S)) > ε] ≤ PS∼(D,f)m [∃h ∈ H : S is bad for h]

= PS∼(D,f)m

[⋃
h∈H

{S is bad for h}
]

≤
∑
h∈H

PS∼(D,f)m [S is bad for h] . (union bound)

We now show that ∀h ∈ H : PS∼(D,f)m [S is bad for h] < δ/|H|. Fix h ∈ H. If LD(h) ≤ ε
then S is never bad for h. Otherwise,

PS∼(D,f)m [S is bad for h] = PS∼(D,f)m [LS(h) = 0]

= PS=((x1,y1),...,(xm,ym))∼(D,f)m

 ⋂
i∈[m]

{h(xi) = f(xi)}


=
∏
i∈[m]

PS∼(D,f)m [h(xi) = f(xi)] (xi’s are i.i.d.)

< (1− ε)m (LD(h) > ε)
≤ e−εm ≤ δ/|H|,

where the last inequality holds whenever m ≥ ln(|H|/δ)/ε. By combining the two chains of
inequalities above, we see that taking a sample of size m(ε, δ) as in the statement suffices to
ensure that P [LD,f (ERMH(S)) > ε] <

∑
h∈H

δ/|H| = δ, as desired. J

2 Discussion

So far we have seen two extreme cases: if the hypothesis class H is finite, then it is PAC
learnable, while if H is the set of all functions over an infinite domain, then it is not PAC
learnable. But there are many useful classes that lie in between these two extremes. A
major goal for us will be to chart this territory. Ideally, we would like to find a simple
characterization that applies to all classes, and tells us precisely which classes are PAC
learnable, and with what sample complexity.

Additionally, our definition of PAC learning required a relatively strong assumption,
namely that the labels of the unknown system perfectly match some function f . But in many
real-world scenarios this is not the case. Next lecture we will see how we can modify our
definition of learnability to model these scenarios as well.

2.1 Bibliographic Notes
Good introductions to PAC learning are available in [4, Chapters 3-5] and [3, Chapter 2]. A
good introduction to Hume’s problem of induction is available in [2].

References
1 John Garcia and Robert A. Koelling. Relation of cue to consequence in avoidance learning.

Psychonomic science, 4(1):123–124, 1966.
2 Leah Henderson. The Problem of Induction. In Edward N. Zalta, editor, The Stanford

Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2020
edition, 2020.

CS 294-220, Spring 2021 11

3 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
The MIT Press, 2nd edition, 2018.

4 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning – From Theory
to Algorithms. Cambridge University Press, 2014. URL: http://www.cambridge.org/de/
academic/subjects/computer-science/pattern-recognition-and-machine-learning/
understanding-machine-learning-theory-algorithms.

5 Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.
doi:10.1145/1968.1972.

6 David H. Wolpert. The Lack of A-Priori Distinctions Between Learning Algorithms. Neural
Comput., 8(7):1341–1390, 1996. doi:10.1162/neco.1996.8.7.1341.

UC Berke ley

http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://doi.org/10.1145/1968.1972
https://doi.org/10.1162/neco.1996.8.7.1341

	The PAC Definition
	Components of a Learning Problem
	PAC Definition – First Attempt
	No Free Lunch
	A Better PAC Definition: Incorporating Inductive Bias
	Finite Hypothesis Classes are PAC Learnable

	Discussion
	Bibliographic Notes

