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1 Introduction

In the previous lecture we presented the PAC definition of learning. We had three goals in
mind: (i) learning with finite computational and sample complexity; (ii) modeling uncertainty
or noise; and (iii) using absence of evidence as evidence of absence. We saw that at least for
finite hypothesis classes, the PAC definition achieves the first goal. But the PAC definition
does not achieve the second goal, because it makes the strong assumption that there exists a
target function f such that the labels are a deterministic function of the instance, y = f(x).

Furthermore, we saw that it is necessary also to assume that f ∈ H for some restricted
class of function H (for instance, if H is finite then PAC learning is possible). This is
problematic because even if there exists such a class H, the nature of unknown systems is
that we often won’t know what H is.

Our goals for this lecture and the next are the following:
Show how to relax the assumption that the target function f satisfies f ∈ H (while
still guaranteeing that learning is possible with finite sample complexities).
Show how to relax the assumption that a target function exists, i.e., that the label y is
a deterministic function of x (while still maintaining finite sample complexity).
Continue characterizing which hypothesis classes H are learnable and with what
complexity.

2 The Agnostic PAC Definition

Agnostic PAC leaning is a relaxation of PAC learning in which we are agnostic, in the
sense that we attempt to make as few assumptions as possible about the unknown system.
The main idea is that, to enable us to weaken our assumptions, we will also weaken the
requirements that the output hypothesis h chosen by the learner is required to meet. Instead
of aiming for h to be good in an absolute sense, we will only aim only for h to be good in a
competitive (relative) sense. We present this idea in two steps.

Step 1: Removing the assumption f ∈ H. Recall that a successful PAC learner should
output a hypothesis h such that with high probability, h is good in the absolute sense
LD,f (h) ≤ ε. In contrast, consider the following competitive objective: with high probability,
∀h′ ∈ H : LD,f (h) ≤ LD,f (h′) + ε. Using the notation LD,f (H) = infh′∈H LD,f (h′), this can
also be rephrased as saying that with high probability,

LD,f (h) ≤ LD,f (H) + ε. (1)

This means that h is almost as good as any hypothesis in H. This is a conditional guarantee.
We do not assume that f ∈ H. Instead, we say that if f ∈ H, then LD,f (h) ≤ ε; otherwise, if
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2 Agnostic PAC, Uniform Convergence, VC Dimension

f is α-close to H in the sense that ∃h′ ∈ H : Px∼D [h′(x) 6= f(x)] ≤ α, then LD,f (h) ≤ α+ ε;
however, if f is far from H then nothing meaningful is guaranteed.

Step 2: Removing the assumption that labels are deterministic. Using the competitive
objective, we can go further and eliminate the assumption that a target function f exists at
all. Instead of saying that y is a deterministic function of x, namely y = f(x) for some target
function f , we can instead say that y is a random variable that depends on x. Namely, there
is a conditional probability function P [y | x]. Another way to say this, is that there exists a
joint probability distribution over X × Y, where P [(x, y)] = P [y | x]P [x].

Because we are no longer assuming that there exists a target function, we will redefine
the loss function as follows.

I Definition 1. Let X and Y be nonempty sets, let D be a distribution over X × Y.
(a) Let h : X → Y be a hypothesis. For any function ` : Y2 → R, the loss function

corresponding to ` is

LD(h) = E(x,y)∼D [` (h(x), y)] .

In particular, the 0-1 loss of h with respect to D is P(x,y)∼D [h(x) 6= y].
(b) Let H be a class of functions X → Y. The loss of H with respect to D is

LD(H) = inf{LD(h) : h ∈ H}.

This quantity is also called the approximation error of H with respect to D.

I Remark 2. Formally, for the loss function to be well defined, we must restrict our discussion
to functions ` and hypothesis functions h : X → Y such that the composed function
(x, y) 7→ ` (h(x), y) is integrable. For example, instead of making statements concerning “the
set of all functions f : X → Y ,” one should more acculturate consider “the set of all functions
f : X → Y such that the loss function LD(f) exists.” However, we will generally not be very
precise about matters concerning measure theory and integration. y

Using this definition we can the competitive objective as LD(h) ≤ LD(H) + ε, and this
makes sense even if we do not assume that a target function exists (note that this differs
from Eq. (1)). We only require that if there exists a hypothesis h′ ∈ H that has loss α, then
the learner’s output h will satisfy LD(h) ≤ α+ ε.

These steps yield the notion of agnostic PAC Learning, which is the main definition of
learning in this course.

I Definition 3 (Agnostic PAC Learning, Vapnik & Chervonenkis [6, 7], Haussler [2]). Let X
and Y be nonempty sets, let F be the set of all functions X → Y, and let H ⊆ F be a class of
functions. We say that a (possibly randomized) algorithm A is an agnostic PAC learner for
H if there exists a sample complexity function m : (0, 1)2 → N such that for every precision
parameter ε ∈ (0, 1), every confidence parameter δ ∈ (0, 1), and every distribution D over
X × Y, if A receives as input the parameters ε and δ and a sample S of size m = m(ε, δ)
such that S =

(
(x1, y1), . . . , (xm, ym)

)
where for each i ∈ [m], the pair (xi, yi) is sampled

independently from D, then A halts and outputs a hypothesis h ∈ F that with probability at
least 1− δ (over the sample S and the randomness of A) satisfies

LD(h) ≤ LD(H) + ε.

We say that a class H ⊆ F is agnostic PAC learnable if there exists an algorithm that is an
agnostic PAC learner for H.
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I Remark 4.
Every agnostic PAC learner for H is in particular also a PAC learner for H. Hence,
the notion of agnostic PAC is stronger (harder to satisfy) than regular PAC. This is
despite the fact that the competitive objective in agnostic PAC is weaker (easier to
satisfy) than the absolute objective in PAC (namely, it is possible that h does not
satisfy LD(h) ≤ ε but does satisfy LD(h) ≤ LD(H) + ε).
The “agnostic” setting is actually not completely agnostic, because it still makes two
non-trivial assumptions: that there exists a distribution that generates the sample
(the sample is not arbitrary), and that the loss to be minimized is also measured
according to the same distribution that generates the sample. These assumptions are
very minimal and natural. Nonetheless, later on in the course we will see the setting
of online learning, which employs the same idea of a competitive objective to discard
even of these minimal assumptions.

2.1 Learning Scenarios

PAC learning and agnostic PAC will serve as our main definitions of learning for most of the
course. Now that we have fully introduced them, it makes sense to reflect what real-world
scenarios are captured by these definitions. Following are three such types of real-world
scenarios.

1. Binary classification. The label space Y has cardinality 2, for instance Y = {0, 1}
or Y = {1,−1}, etc. Examples include:

Classifying an email as spam or ham (not spam).
Deciding whether a photograph depicts a cat.
Given input to a fingerprint reader, decide whether to unlock a device or not
(whether the fingerprint belongs to the owner of the device or not).
Given data from a medical examination (e.g., an MRI scan), diagnose whether a
patient has a specific medical condition or not (e.g., cancer).
In a vehicle, decide whether or not to activate the emergency brake assist (EBA)
system.
Given a text message, decide whether it is intended humorously or literally.

The 0-1 loss is a natural loss function for most cases of binary classification.
2. Multi-class classification. The label space Y is discrete and has more than two

elements. Examples include:
Given a text, identify what language it is written in.
Given a photograph of an object, identify the object (“chair”, “cat”, etc.).
Given the current state in a game of chess, output a good next move.
Structured learning tasks, in which the required label has a nontrivial internal
structure. For example, given a sentence in English, produce a syntactical parse
tree of the sentence.
Ranking: given a set of objects, order the objects according to some criteria.
For instance, a search engine is given a query and a set of documents, and is
required to order the documents according to their relevance to the query. The
label space is the set of possible permutations of the documents.

The 0-1 loss can be a natural loss function for the first two examples above, but the
remaining examples might be better served by a richer loss function that distinguishes
between different levels of correctness.
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4 Agnostic PAC, Uniform Convergence, VC Dimension

3. Regression. The label space Y is R, or some other large metric space, and the
objective is to output a label that is close to the correct label with respect to the
metric. Examples include:

Given sensor input from a self-driving car, try to identify the distance to an
object ahead (e.g., a pedestrian).
Given current weather conditions, predict the temperature tomorrow.
Given recent sport statistics, predict the probability that a specific sports team
will win an upcoming match.

There are a variety of natural loss functions for regression, including (for real-valued
labels) square loss `(y, y′) = (y − y′)2, absolute error loss `(y, y′) = |y − y′|, hinge loss,
cross entropy loss, etc.

All of the above are instances of supervised learning, meaning that the learner first receives a
training set with labeled instances, and then is required to predict the labels of previously
unseen instances. There are also many important learning scenarios that are not instances of
supervised learning and are not covered by the PAC and agnostic PAC models. These include
reinforcement learning, online learning, transductive learning, semi-supervised learning,
active learning, and learning with queries, as well as unsupervised learning scenarios such as
clustering and dimensionality reduction. We will touch on some of these settings in later
stages of the course.

3 Error Decomposition: The Bias–Complexity Tradeoff

The Bayes optimal error is the best (minimal) loss that can be achieved when predicting
labels for a specific distribution, and it is determined by how noisy the labels are. Formally:

I Definition 5. Let X and Y be sets, assume |Y| <∞, let D be a distribution over X × Y,
and let LD denote the 0-1 loss.

(a) The Bayes optimal error for D is

L∗D = inf
{
LD(f)

∣∣∣ f : X → Y
}
.

(b) The Bayes optimal classifier for D is

f∗(x) = argmaxy∈Y P(X,Y )∼D [Y = y |X = x] .

(c) The noise of D at instance x ∈ X is

noise(x) = 1−max
y∈Y

P(X,Y )∼D [Y = y |X = x] .

(d) The noise of D is

noise(D) = Ex∼Dx [noise(x)] ,

where Dx is the marginal distribution of D on X .

I Fact 6. noise(D) = L∗D = LD(f∗).

Assume an agnostic PAC learning algorithm outputs hypothesis from a classH of functions
X → Y. Let h ∈ H, and let D be a distribution over X × Y. LD(h)− L∗D is a measure of



CS 294-220, Spring 2021 5

Figure 1 Illustration of the estimation error (in green) and approximation error (in orange). Here,
it is assumed that there exists a best-in-class hypothesis, that is h∗ such that LD(h∗) = LD(H).
Source: Mohri, Rostamizadeh and Talwalkar [4].

how well h compares to the best possible function f∗ (which will typically not be a member
of H). We can always decompose this loss as follows.

LD(h)− L∗D = LD(h)− LD(H)︸ ︷︷ ︸
estimation error

+ LD(H)− L∗D︸ ︷︷ ︸
approximation error

.

There is a tradeoff between these two terms. Assume we make the class H larger and more
complex, so that the algorithm has more output functions to choose from. Then

The approximation error will typically become smaller, because H will gain functions
that are closer to f∗. However,
The estimation error will become larger, because finding a good hypothesis in H is
harder when H is larger.

Hence, when designing a learning algorithm, we need to carefully consider which class of
functions the algorithm should use. This decision will typically also be informed by any prior
knowledge available about the learning problem.

4 Agnostic PAC Learning via Uniform Convergence

We develop the notion of uniform convergence, using the following lemma as an example. It
generalizes the result for finite classes to the agnostic setting.

I Lemma 7. Let X and Y be (finite or infinite) nonempty sets, and let H be a finite
subset of the functions X → Y. Then H is agnostic PAC learnable with sample complexity
m(ε, δ) =

⌈
2 ln(2|H|/δ)

ε2

⌉
.

I Remark 8. Note that the dependence on 1/ε is quadratic, unlike in the PAC case.
We previously saw a proof that finite classes are PAC learnable. That outline of the proof
was:

1. For any single hypothesis h ∈ H, we can efficiently estimate whether h is ε-good or
not using a few samples. (Taking ln(1/δ)

ε samples suffices to check whether LD(h) ≤ ε
with confidence 1− δ.)

2. Because H is finite, we can use a union bound in order to estimate this for all h ∈ H
simultaneously. (Taking ln(|H|/δ)

ε samples suffices to check this for all h ∈ H.)
To prove Lemma 7, we will follow the same outline, using a notion of uniform convergence.

Recall that in calculus, their is a notion of uniform convergence for sequences of functions,
which contrasts with pointwise convergence:

I Definition 9. Let Ω be a set, let f1, f2, f3 . . . be an infinite sequence of functions Ω→ R,
and let f∗ : Ω→ R be a function.

UC Berke ley



6 Agnostic PAC, Uniform Convergence, VC Dimension

1. We say that (fn)n∈N convergence pointwise to f∗ if

(∀ε > 0) (∀x ∈ Ω) (∃N ∈ N) (∀n ≥ N) : |fn(x)− f∗(x)| ≤ ε.

2. We say that (fn)n∈N convergence uniformly to f∗ if

(∀ε > 0) (∃N ∈ N) (∀x ∈ Ω) (∀n ≥ N) : |fn(x)− f∗(x)| ≤ ε.

(a) fn = e−x/n converges to f∗ ≡ 0 pointwise
and uniformly in (0, 1).

(b) fn = e−nx converges to f∗ ≡ 0 pointwise
but not uniformly in (0, 1).

Figure 2 Pointwise vs. uniform convergence for sequences of real functions.

Similarly, we introduce the following definition which concerns the convergence of the
empirical loss functions LSm to the population loss LD, where LSm is the empirical loss for a
sample of size m.

I Definition 10. Let H be a class of functions X → Y. We say that H satisfies the uniform
convergence property if

(∀ε, δ ∈ (0, 1)) (∃M ∈ N) (∀ distribution D over X × Y) (∀h ∈ H) (∀m ≥M) :
PSm∼Dm [|LSm(h)− LD(h)| > ε] ≤ δ. (2)

Let mUC
H : (0, 1)2 → N be a function. We say that H satisfies uniform convergence with

sample complexity mUC
H if taking M = mUC

H (ε, δ) satisfies (2) above.1

The following lemma states that uniform convergence is sufficient for agnostic learnability.

I Lemma 11. Let H be a class of functions X → Y. If H satisfies the uniform convergence
property with sample complexity mUC

H , then ERMH is an agnostic PAC learner for H with
sample complexity m(ε, δ) = mUC

H (ε/2, δ).

Proof. Fix a distribution D over X × Y, fix ε, δ ∈ (0, 1), and let h = ERMH(S) where
S ∼ Dm and m = mUC

H (ε/2, δ). From uniform convergence, with probability at least 1− δ,

∀h′ ∈ H : |LS(h′)− LD(h′)| ≤ ε/2. (3)

In that case, for every h∗ ∈ H,

LD(h) ≤ LS(h) + ε/2 (from uniform convergence (3))
≤ LS(h∗) + ε/2 (h is an ERM hypothesis)
≤ LD(h∗) + ε/2 + ε/2 (from uniform convergence (3))
= LD(h∗) + ε. J

1 Namely, (∀ε, δ ∈ (0, 1)) (∀D) (∀h ∈ H) (∀m ≥ mUC
H (ε, δ)) : PSm∼Dm [|LSm(h)− LD(h)| > ε] ≤ δ.
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Figure 3 Uniform convergence implies agnostic PAC learnability (Lemma 11). The empirical
loss is ε

2 -close to the true loss, and therefore the ERM algorithm performs well.

To prove Lemma 7, we will show that finite classes satisfy uniform convergence.

B Claim 12. Let H be a class of functions X → Y. If H is finite, then H satisfies uniform
convergence with sample complexity mUC

H (ε, δ) =
⌈

ln(2|H|/δ)
2ε2

⌉
. y

Proof of Claim 12. Let h ∈ H. Fix a distribution D over X ×Y and parameters ε, δ ∈ (0, 1).
Let S ∼ Dm for m = mUC

H (ε, δ) as in the statement. Fix h ∈ H. To complete the proof it
suffices to show that P [|LS(h)− LD| > ε] ≤ δ/|H|, and then the result follows from a union
bound over all h ∈ H.

Let S =
(

(x1, y1), . . . , (xm, ym)
)
. Note that {1(h(xi) 6= yi)}i∈[m] are i.i.d. random

variables with support in {0, 1} and mean LD(h). Hence, Hoeffding’s inequality yields

PS∼Dm [|LS(h)− LD| > ε] = PS

∣∣∣∣∣∣ 1
m

∑
i∈[m]

1(h(xi) 6= yi)− LD(h)

∣∣∣∣∣∣ > ε


≤ 2 exp

(
2mε2) (Hoeffding’s inequality)

≤ δ/|H|, (m =
⌈

ln(2|H|/δ)
2ε2

⌉
)

as desired. J

As a corollary, we obtain Lemma 7.

Proof of Lemma 7. From Claim 12, H satisfies uniform convergence with sample complexity
mUC
H (ε, δ) =

⌈
ln(2|H|/δ)

2ε2

⌉
. From Lemma 11, ERMH is an agnostic PAC learner for H with

sample complexity
⌈

2 ln(2|H|/δ)
ε2

⌉
. J

5 The VC Dimension: Uniform Convergence for Infinite Classes

So far, we have seen that the set of all functions over an infinite domain is not PAC learnable
(and therefore not agnostic PAC learnable), while finite classes of functions are agnostic PAC
learnable (and therefore also PAC learnable). But what about classes in between these two
extremes?

UC Berke ley



8 Agnostic PAC, Uniform Convergence, VC Dimension

First, we observe that some infinite classes over infinite domains are agnostic PAC
learnable, and therefore being finite is a sufficient condition for learnability, but is not a
necessary condition.

I Lemma 13. Let

T =
{
ft : R→ {0, 1}

∣∣ ∀x ∈ R : ft(x) = 1(x ≥ t)
}

be the set of threshold functions (boolean monotone increasing functions over the domain R).
Then ERMT is a PAC learner for T with sample complexity m(ε, δ) =

⌈
ln(2/δ)
ε

⌉
.

Proof. We prove the lemma under the assumption that the distribution D over the domain
R has a continuous cumulative distribution function (CDF), denoted FD.2 The proof for the
case with point masses is similar but requires a bit more care.

Fix ε, δ ∈ (0, 1), a distribution D over R, and a target function ft∗ ∈ T . Let S ∼ (D, ft∗)m
and h = ERMT (S). We need to show that PS [LD(h) > ε] < δ.

Let th ∈ R be such that h = fth . Let B be the set of points that are misclassified by h.
Namely,

B =
{

[min{th, t∗},max{th, t∗}) th 6= t∗

∅ th = t∗

Note that LD(h) = D(B), so

P [LD(h) > ε] = P [D(B) > ε]
= PS [th < t∗ ∧ D(B) > ε] + PS [th > t∗ ∧ D(B) > ε] . (4)

Hence, it suffices to show that each of the two summands in Eq. (4) is bounded by δ/2. We
prove that PS [th < t∗ ∧ D(B) > ε] ≤ δ/2. Note that if FD(t∗) ≤ ε then we are done, because
D(B) ≤ D((−∞, t∗)) = FD(t∗) ≤ ε. Otherwise, FD(t∗) > ε, limt→−∞ FD(t) = 0, and FD is
continuous, and so by the intermediate value theorem there exists tε ∈ (−∞, t∗) such that
FD(tε) = FD(t∗)− ε. Namely, the interval Iε = (tε, t∗) satisfies D(Iε) = FD(t∗)−FD(tε) = ε.

Let S =
(

(xi, yi)
)
i∈[m]

, and observe that if th < t∗ and ∃i ∈ [m] such that xi ∈ Iε, then

tε < xi < th < t∗, and this implies D(B) = D([th, t∗)) ≤ D(Iε) = ε. Hence,

PS∼Dm [th < t∗ ∧ D(B) > ε] ≤ PS [∀i ∈ [m] : xi /∈ Iε]
=
∏
i∈[m]

PS [xi /∈ Iε] (xi’s are independent)

= (1− ε)m (D(Iε) = ε)

≤ e−εm ≤ δ/2. (m =
⌈

ln(2/δ)
ε

⌉
)

This proves the bound for the left summand in Eq. (4). The proof for the right summand is
analogous. J

Towards developing a condition that precisely characterizes which classes are PAC or
agnostic PAC learnable, we start with a slightly more general version of Corollary 12 in
Unit 2, which stated that the class of all functions from an infinite domain is not learnable.

2 Namely, D(x) = 0 for all x ∈ R.
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(a) The interval B contains the points that are misclassified by h.

(b) The interval Iε has measure ε, and t∗ is its right endpoint.

(c) tε, the left endpoint of Iε, exists by an application of the intermediate value theorem to the CDF of D,
which is assumed to be continuous.

Figure 4 Details of the proof of Lemma 13.

This followed from Corollary 11 in Unit 2, which implied that PAC learning the class of all
functions from a set X of cardinality n to {0, 1} with parameters ε, δ < 1

8 is not possible with
less than n/2 samples. This implied Corollary 12 in Unit 2 because for any n ∈ N, the set of
all functions from an infinite domain contains within it a a set of all functions from a subset
of the domain of cardinality n, and so PAC learning requires at least n/2 samples for all
n ∈ N – namely, a non-finite number of samples. We can therefore reformulate Corollaries 11
and 12 in the following more general way.

I Definition 14. Let X be a nonempty set, Y = {0, 1}, H be a class of functions X → Y,
f ∈ H, and let X ⊆ X .

1. The restriction of the function f to the subset X, is the function f |X : X → Y such
that ∀x ∈ X : f |X(x) = f(x).

2. The restriction of the class H to the subset X, denoted H|X , is the set of functions
{f |X : f ∈ H}.

3. We say that H shatters X if the restriction of H to X is the set of all functions X → Y,
namely, if

∣∣∣H|X ∣∣∣ = 2|X|.

B Claim 15. Let X be a set, let Y = {0, 1}, and let H be a class of functions X → Y.
1. Assume H shatters some subset X ⊆ X such that |X| = n. Then any algorithm that

PAC learns H with parameters ε, δ < 1/8 must use a sample of size at least n/2.

UC Berke ley
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2. Assume that for any n ∈ N, there exists X ⊆ X such that |X| = n and H shatters X.
Then H is not PAC learnable.

Proof. For Part 1, assume that A is an algorithm that PAC learns H with parameters
ε, δ < 1/8. Then in particular, A PAC learns H with parameters ε, δ < 1/8 for any unknown
distribution D such that D(X) = 1. This is equivalent to A PAC learning the class H|X of
functions X → Y with parameters ε, δ < 1/8. Because H shatters X, H|X is the set of all
functions X → Y, and so from Corollary 11 in Lecture 2, A must use a samples of size at
least n/2.

Part 2 follows from Part 1 as follows. Assume for contradiction that there exists an
algorithm A that PAC learns H with parameters ε, δ < 1/8 and uses m samples. From the
assumption, there exists a set X ⊆ X such that H shatters X and |X| > 2m. Then from
Part 1, A must use strictly more than m samples, a contradiction. J

This motivates the following definition.

I Definition 16 (Vapnik & Chervonenkis [6]). Let X be a nonempty set, Y = {0, 1}, and let
H be a class of functions X → Y. The Vapnik-Chervonenkis (VC) dimension of H is

VC(H) = sup {|X| : X ⊆ X ∧ H shatters X}.

Namely, VC(H) is the largest number n ∈ N such that H shatters a set of cardinality n, and
if H shatters sets of unbounded size then VC(H) =∞.

(a) T can shatter a point.

(b) T cannot shatter any set of two points.

Figure 5 The VC dimension of monotone increasing thresholds is 1.

I Example 17. Let T =
{
ft : R→ {0, 1}

∣∣ ∀x ∈ R : ft(x) = 1(x ≥ t)
}

be the class of
thresholds (as in Lemma 13). Then VC(T ) = 1.

To see this, we need to show two things:
There exists a set A ⊆ R such that |A| = 1 and T shatters A. Indeed, let A = {0},
and note that

∣∣∣T ∣∣
A

∣∣∣ = 2 = 2|A| because f−1(0) = 1 and f1(0) = 0. Hence T shatters
A.
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For any set A ⊆ R such that |A| > 1, T does not shatter A. It suffices to show
that no set of size 2 is shattered, because if a set of size n > 2 is shattered then in
particular every subset of size 2 of that set is also shattered. Fix a set A = {x, y}
with x < y. There does not exist f ∈ T such that f(x) = 1 and also f(y) = 0.
Hence, A is not shattered.

(a) An example of an axis-aligned rectangle fa,b ∈ R.

(b) There exists a set of 4 points in R2 that is shattered by R.

(c) There does not exist a set of 5 points in R2 that is shattered by R.

Figure 6 The VC dimension of axis-aligned rectangles is 4.

I Example 18. An axis-aligned rectangle in R2 is a function fa,b : R2 → {0, 1} with
a = (ax, ay) ∈ R2 and b = (bx, by) ∈ R2 such that

fa,b(x, y) = 1(ax ≤ x ≤ bx ∧ ay ≤ y ≤ by).

Let R be the class of all axis-aligned rectangles, R = {fa,b : a, b ∈ R2}. Then VC(R) = 4.
To see this, we need to show two things:

There exists a set A ⊆ R such that |A| = 4 and R shatters A. Indeed, the set
A = {(1, 0), (−1, 0), (0, 1), (0,−1)} is shattered.
For any set A ⊆ R such that |A| > 4, R does not shatter A. Fix a set A with |A| ≥ 5.
We claim that A is not shattered. Let `, r, t, b denote the leftmost, rightmost, topmost
and bottommost members of A (if more than one members of A are equally extreme
in some direction, choose one of them arbitrarily). Let c ∈ A \ {`, r, t, b} (c exists
because |A| ≥ 5). To see that A is not shattered is suffices to observe that for any

UC Berke ley



12 Agnostic PAC, Uniform Convergence, VC Dimension

rectangle fz,z′ , if we assume that fz,z′(`) = fz,z′(r) = fz,z′(t) = fz,z′(b) = 1, then
fz,z′(c) = 1. This observation is true because the assumption implies zx ≤ `x ≤
cx ≤ rx ≤ z′x, and similarly zy ≤ cy ≤ z′y, and therefore fz,z′(c) = 1.

I Example 19. Let H be a class of functions with |H| < ∞. Then VC(H) ≤ log2(|H|).
Indeed, let A be a shattered subset of the domain. Then

2|A| =
∣∣∣H|A∣∣∣ ≤ |H| =⇒ |A| ≤ log2(|H|).

So H can shatter sets of cardinality at most log2(|H|).
The above inequality is tight when H is the set of all boolean functions over a finite

domain. Notice that VC(H) can be much smaller than log2(|H|). For instance, let H ⊆ T
where T is as in Example 17 and |H| <∞. Then VC(H) = 1.

6 Discussion

In this unit, we have introduced the agnostic PAC models, and the concepts of uniform
convergence and VC dimension. In the next unit we will see how to combine these concepts
to prove the fundamental theorem of PAC learning, which states that the VC dimension
completely characterizes the learnability of classes in the PAC and agnostic PAC models.

6.1 Bibliographic Notes
The VC dimension and many related results are due to Vapnik and Chervonenkis [6, 7]. See
also [8]. The formalization of agnostic PAC learning is due to Haussler [2].

Good expositions of the material in this unit are available in [5, Chapters 3–6], [4,
Chapters 2–3], as well as [1, Chapters 5–7] and [3, Chapter 3].
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