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The Fundamental Theorem of PAC Learning

1 Introduction

In Unit 4 we saw Claim 15, which states a lower bound of Ω(VC(H)) on the sample complexity
of PAC learning H, and Lemma 11, which states an upper bound on the sample complexity
of agnostic PAC learning that follows from uniform convergence. Our main result on
characterizing learnability and sample complexity will tie together the notions of uniform
convergence and VC dimension, showing that these two bounds are tight: every class of finite
VC dimension satisfies uniform convergence with sample complexity O(VC(H)). Hence, a
class is PAC and agnostic PAC learnable if and only if it has finite VC dimension, and if the
VC dimension is finite then the sample complexity of learning is Θ(VC(H)).

2 The Growth Function and Sauer’s Lemma

The growth function measures how rich a class H is on finite subsets of the domain.

I Definition 1. Let X and Y be sets, and let H be a class of functions X → Y. The growth
function of H is a function τH : N→ N given by

τH(m) = sup
{∣∣∣H|A∣∣∣ : A ⊆ X ∧ |A| = m

}
.

Notice that the growth function and the VC dimension are related by

VC(H) = sup {m ∈ N : τH(m) = 2m}.

The following combinatorial lemma describes how the growth function behaves more generally,
and its relation to the VC dimension. Conceptually, it has two phases: below the VC
dimension, τH grows exponentially; above the VC dimension, τH grows at most polynomially.

I Lemma 2 (Sauer). Let X be a set and let H be a class of functions X → {0, 1} such that
VC(H) = d <∞. Then for natural numbers m,

∀m ≤ d : τH(m) = 2m,

∀m > d : τH(m) ≤
d∑
i=0

(
m

i

)
≤
(em
d

)d (?)
≤ md, (1)

where (?) holds whenever d > e.

The lemma is a consequence of the following claim.

B Claim 3. Let X be a set and let H be a class of functions X → {0, 1} such that
VC(H) = d <∞. Then for any A ⊆ X ,{

B ⊆ A
∣∣∣ ∃h ∈ H : B = A ∩ h−1(1)

}
≤
∣∣∣{B ⊆ A ∣∣∣ H shatters B

}∣∣∣ ,
where h−1(1) =

{
x ∈ X

∣∣∣ h(x) = 1
}
.
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2 The Fundamental Theorem of PAC Learning

Figure 1 Sauer’s lemma says that the growth function τH has two distinct phases, which are
determined by the VC dimension of the class, d = VC(H). For inputs m ≤ d, it precisely equals 2m.
For inputs m > d, it grows at most polynomially.

Proof of Lemma 2. If m ≤ d then τH(m) = 2m by the definition of τH and the VC
dimension.

For the case m > d, fix m ∈ N such that d < m ≤ |X |. For any A ⊆ X such that |A| = m,∣∣H|A∣∣ =
∣∣∣{B ⊆ A ∣∣∣ ∃h ∈ H : B = A ∩ h−1(1)

}∣∣∣ (def. of H|A)

≤
∣∣∣{B ⊆ A ∣∣∣ H shatters B

}∣∣∣ (Claim 3)

=
∣∣∣{B ⊆ A ∣∣∣ H shatters B ∧ |B| ≤ d

}∣∣∣ (VC(H) = d)

≤
∣∣∣{B ⊆ A ∣∣∣ |B| ≤ d}∣∣∣

=
d∑
i=0

(
m

i

)
.

Hence, τH(m) = maxA⊆X , |A|=m
∣∣H|A∣∣ ≤ ∑d

i=0
(
m
i

)
. This completes the proof of the first

inequality in Eq. (1).
For the second inequality in Eq. (1),

d∑
i=0

(
m

i

)
≤

m∑
i=0

(
m

i

)(m
d

)d−i
((m/d)d−i ≥ 1 for all i ≤ d)

=
(m
d

)d m∑
i=0

(
m

i

)(
d

m

)i
=
(m
d

)d(
1 +

(
d

m

))m
(binomial formula)

≤
(m
d

)d
ed =

(em
d

)d
. (∀x ∈ R : 1 + x ≤ ex) J

Proof of Claim 3. We proceed by induction on n = |A|. For the base case n = 0,{
B ⊆ A

∣∣∣ ∃h ∈ H : B = A ∩ h−1(1)
}

= {∅} = {B ⊆ A
∣∣∣ H shatters B}.
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For the induction step, we assume the claim holds for all sets A ⊆ X of cardinality n,
and prove that it holds for all sets of cardinality n+ 1. Fix a set A ⊆ X with |A| = n+ 1, fix
a ∈ A, and let A′ = A \ {a}. Define

H ′1 =
{
g : A′ → {0, 1}

∣∣∣ ∃h ∈ H : g = h|A′

}
= H|A′ ,

H ′2 =
{
g : A′ → {0, 1}

∣∣∣ ∃h1, h2 ∈ H : g = h1|A′ = h2|A′ ∧ h1(a) 6= h2(a)
}
⊆ H|A′ ,

H2 =
{
g : A→ {0, 1}

∣∣∣ ∃h1, h2 ∈ H : g|A′ = h1|A′ = h2|A′ ∧ h1(a) 6= h2(a)
}
⊆ H|A.

Namely, H ′2 = H2|A′ .
Observe that∣∣∣H|A∣∣∣ =

∣∣∣{g : A→ {0, 1}
∣∣∣ ∃h ∈ H : g = h|A

}∣∣∣
=
∣∣∣{g : A′ → {0, 1}

∣∣∣ ∃h ∈ H : g = h|A′ ∧ h(a) = 0
}∣∣∣

+
∣∣∣{g : A′ → {0, 1}

∣∣∣ ∃h ∈ H : g = h|A′ ∧ h(a) = 1
}∣∣∣

=
∣∣∣{g : A′ → {0, 1}

∣∣∣ ∃h ∈ H : g = h|A′

}∣∣∣ (2)

+
∣∣∣{g : A′ → {0, 1}

∣∣∣ ∃h1, h2 ∈ H : g = h1|A′ = h2|A′ ∧ h1(a) = 0 ∧ h2(a) = 1
}∣∣∣

= |H ′1|+ |H ′2|. (3)

Eq. (2) holds because we can count the restrictions of H to A by counting the number of
restrictions of H to A′, where we count twice any restriction that has both possible extensions
h(a) = 0 and h(a) = 1.

Consider each term separately.

|H ′1| =
∣∣∣{g : A′ → {0, 1}

∣∣∣ ∃h ∈ H : g = h|A′

}∣∣∣
=
∣∣∣{B ⊆ A′ ∣∣∣ ∃h ∈ H : B = A ∩ h−1(1)

}∣∣∣
≤
∣∣∣{B ⊆ A′ ∣∣∣ H shatters B

}∣∣∣ (induction hypothesis)

=
∣∣∣{B ⊆ A ∣∣∣ H shatters B ∧ a /∈ B

}∣∣∣ . (4)

|H ′2| =
∣∣∣H2|A′

∣∣∣
=
∣∣∣{B ⊆ A′ ∣∣∣ ∃h ∈ H2 : B = A ∩ h−1(1)

}∣∣∣
≤
∣∣∣{B ⊆ A′ ∣∣∣ H2 shatters B

}∣∣∣ (induction hypothesis) (5)

=
∣∣∣{B ⊆ A ∣∣∣ H2 shatters B ∧ a ∈ B

}∣∣∣ (6)

≤
∣∣∣{B ⊆ A ∣∣∣ H shatters B ∧ a ∈ B

}∣∣∣ . (because H2 ⊆ H|A) (7)

To understand the equality in line (6), notice (by the definition of H2) that H2 shatters
B ⊆ A′ iff H2 shatters B ∪ {a}. Hence B 7→ B ∪ {a} is a bijection from the set in line (5) to
the set in line (6).
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4 The Fundamental Theorem of PAC Learning

Combining Eq. (3), (4) and (7) yields∣∣∣H|A∣∣∣ ≤ ∣∣∣{B ⊆ A ∣∣∣ H shatters B ∧ a /∈ B
}∣∣∣+

∣∣∣{B ⊆ A ∣∣∣ H shatters B ∧ a ∈ B
}∣∣∣

=
∣∣∣{B ⊆ A ∣∣∣ H shatters B

}∣∣∣ ,
as desired. J

3 Uniform Convergence for Classes of Finite VC Dimension

I Definition 4. A set system is a pair (Ω,R) such that Ω is a nonempty set and R is a set
of subsets of Ω.

I Definition 5. Let (Ω,R) be a set system, let D be a distribution over Ω, and let

S = (z1, . . . , zm) ∈ Ωm

for some m ∈ N. Let ε > 0.
(i) We say that S is an ε-net for (Ω,R) with respect to distribution D if

∀R ∈ R : D(R) > ε =⇒ S ∩R 6= ∅.

(ii) We say that S is an ε-representative sample for (Ω,R) with respect to distribution D if

∀R ∈ R :
∣∣∣∣ |S ∩R|m

−D(R)
∣∣∣∣ ≤ ε.

The notation S ∩R above denotes {i ∈ [m] : zi ∈ R}.

Observe that every ε-representative sample for (Ω,R) is also an ε-net for for (Ω,R), but
not vice versa. Similarly, we can define ε-nets and ε-representative samples for classes of
binary functions.

I Definition 6. Let X be a nonempty set, let H be a set of function X → {0, 1}, let
Ω = X × {0, 1}, let S =

(
(x1, y1), . . . , (xm, ym)

)
∈ Ωm, and let D be a distribution over Ω.

For each h ∈ H, let

Rh =
{

(x, y) ∈ Ω : y 6= h(x)
}
,

and let R = {Rh : h ∈ H}. We say that S is an ε-net (ε-representative sample) for class
H with respect to distribution D if it is an ε-net (ε-representative sample) for (Ω,R) with
respect to D.

In other words, the 0-1 loss satisfies that:
S is an ε-net for H with respect to D if

∀h ∈ H : LD(h) > ε =⇒ LS(h) > 0.

S is an ε-representative sample for H with respect to D if

∀h ∈ H : |LS(h)− LD(h)| ≤ ε.

I Remark 7. H has the uniform convergence property if and only if for any ε, δ ∈ (0, 1) there ex-
istsm ∈ N such that for any distribution D, PS∼Dm [S is an ε-representative sample] ≥ 1− δ.
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I Theorem 8. There exists a function

m(d, ε, δ) = O

(
d ln (1/ε) + ln (1/δ)

ε

)
such that the following holds. For any ε, δ ∈ (0, 1), nonempty sets X and Y, distribution D
over X × Y, and class H of functions X → Y, if VC(H) = d < ∞ and S ∼ Dm such that
m ≥ m(d, ε, δ), then with probability at least 1− δ, S is an ε-net for H with respect to the
distribution D.

I Theorem 9. There exists a function

m(d, ε, δ) = O

(
d ln (d/ε) + ln (1/δ)

ε2

)
such that the following holds. For any ε, δ ∈ (0, 1), nonempty sets X and Y, distribution D
over X × Y, class H of functions X → Y, and loss function ` : H × (X × Y) → [0, 1], if
VC(H) = d <∞ and S ∼ Dm such that m ≥ m(d, ε, δ), then:

(a) P [∃h ∈ H : |LS(h)− LD(h)| > ε] ≤ 4τH(2m) exp
(
− ε

2m
8

)
.

(b) With probability at least 1− δ, S is an ε-representative sample for H with respect
to distribution D and loss function `.

I Remark 10. The proofs of the two theorems are very similar and contain the same ideas.
We present the proof of Theorem 9, which is slightly more involved, and leave proving
Theorem 8 as an exercise.

Proof of Theorem 9. Let S = (z1, . . . , zm), and let S′ ∼ Dm, S′ = (z′1, . . . , z′m) be an
additional sample taken independently of S.1 For any h ∈ H, let ∆S(h) = |LS(h)− LD(h)|.
Consider the following two events.

E1 = {∃h ∈ H : ∆S(h) > ε},
E2 = {∃h ∈ H : ∆S(h) > ε ∧ ∆S′(h) ≤ ε/2}.

We need to show that P [E1] ≤ δ. The proof is partitioned into three claims.

Claim I: P [E1] ≤ 2P [E2].
Intuitively, the idea is that for a fixed h ∈ H, each of LS(h) and LS′(h) is a good estimate

of LD(h), and they are independent. Hence, even if we fix a particular h such that LS(h) is
a bad estimate, we can still expect that LS′(h) will be a good estimate.

Note that P [E2] ≥ P [E1 ∩ E2] = P [E2 | E1]P [E1]. Hence, to prove Claim I it suffices to
show that P [E2 | E1] ≥ 1/2. Seeing as E2 is a subset of E1,

P [E2 | E1] = P
[
∃h ∈ H : ∆S(h) > ε ∧ ∆S′(h) ≤ ε/2

∣∣∣ ∃g ∈ H : ∆S(g) > ε
]

≥ P
[
∆S′(g) ≤ ε/2

∣∣∣ ∃g ∈ H : ∆S(g) > ε
]
. (8)

1 S′ is sampled purely to aid our analysis in the proof, it is not necessary to actually take any additional
samples beyond S to obtain an ε-representative sample.

UC Berke ley



6 The Fundamental Theorem of PAC Learning

Notice that for any g ∈ H, LS′(g)− LD(g) = 1
m

∑
i∈[m] (`(g, z′i)− LD(g)), and furthermore

Zi = `(g, z′i)− LD(g) for i ∈ [m] are i.i.d. random variables with mean 0 and support in
[−1, 1]. So for any fixed g ∈ H, Hoeffding’s inequality implies,

P [∆S′(g) > ε/2] = P

∣∣∣∣∣∣ 1
m

∑
i∈[m]

Zi

∣∣∣∣∣∣ > ε

2

 ≤ 2 exp
(
−ε

2m

8

)
≤ 1

2 , (9)

where the last inequality holds for m as in the statement of the theorem.2 This holds also
when conditioning on the event ∆S(g) > ε, because S′⊥S. Combining (8) and (9) implies
P [E2 | E1] ≥ 1/2, concluding the proof of Claim I.

Claim II: P [E2] ≤ τH(2m) · 2 exp
(
− ε

2m
8

)
.

Intuitively, seeing as LS(h) and LS′(h) are both good estimates of the same value LD(h),
the probability that they be markedly different for a particular h is small. Let Sx, S′x ⊆ X
be the set of domain elements that appear in S and S′ respectively. A key idea in the
proof is that even though H is an infinite class, the event in which LS(h) and LS′(h) are
very different for a particular h is an event that concerns only how h behaves on the set
X = Sx ∪ S′x, which is a finite subset of the domain (and this event does not depend on
how h and D behave outside of X). Hence, we can restrict our attention to the projections
h|X ∈ H|X instead of considering functions h ∈ H. For any particular restricted function
h|X , the probability that LS(h) and LS′(h) are very different vanishes exponentially. Seeing
as H|X is a finite set of functions (

∣∣H|X ∣∣ ≤ τH(2m) because |X| ≤ 2m), we can apply the
union bound, and this yields the inequality.

To make this argument formal, there are two issues we need to consider. The first issue
is that in order to apply a union bound using the fact that H|X is finite, we need the set X
to be fixed (if the class H|X is itself a random variable, we cannot apply a union bound).
We solve this by generating our samples via a two-step process: (1) a vector Z of 2m i.i.d.
samples is chosen from D; (2) Z is partitioned into two vectors S and S′ of length m. Thus,
for each fixed value X = Zx = Sx ∪ S′x, the set H|X is finite and fixed, and we can apply a
union bound separately for each value of Z (using the law of total probability).

The second issue is that for each h ∈ H|X , we want to use Hoeffding’s inequality to bound
the probability that |LS(h)−LS′(h)| is large. To do so, we need to present this quantity as an
average of independent random variables Qi = `(h, zi)− `(h, z′i). To ensure that Q1, . . . , Qm
are independent, we specify that in the two-step process above, Z is partitioned into S and
S′ in a specific manner as follows. Denote Z = (a1, . . . , am, b1, . . . , bm). For each i ∈ [m],
with probability 1

2 , we set zi = ai and z′i = bi, and with probability 1
2 we make the opposite

assignment, namely zi = bi and z′i = ai. Thus, for each fixed value Z, the variables Qi are
independent, and furthermore E [Qi] = 0 for all i ∈ [m].3 Observe that sampling (S, S′)
using this two-step process produces the same joint distribution as sampling S ∼ Dm and
S′ ∼ Dm independently. This technique of “mixing” or “swapping” the samples between S
and S′ is known as symmetrization.

2 In fact, using Chebyshev’s inequality would suffice here.
3 In contrast, notice that if for example we chose instead to assign the members of Z to S and S′ by

choosing an assignment uniformly from the set of 2m! possible assignments, then the Qi’s would not be
independent.
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Putting this all together,

PS,S′ [E2] = P [∃h ∈ H : ∆S(h) > ε ∧ ∆S′(h) ≤ ε/2]
≤ P [∃h ∈ H : |LS(h)− LS′(h)| ≥ ε/2] (inverse triangle inequality)
= P [∃h ∈ H|X : |LS(h)− LS′(h)| ≥ ε/2] (event depends only on the

projection of h to X = Sx ∪ S′x)

= E
Z

[
PS,S′

[
∃h ∈ H|X : |LS(h)− LS′(h)| ≥ ε/2

∣∣∣ Z]] (law of total probability)

For any fixed value of Z,

PS,S′

[
∃h ∈ H|X : |LS(h)− LS′(h)| ≥ ε/2

∣∣∣ Z]

≤
∑

h∈H|X

P
[
|LS(h)− LS′(h)| ≥ ε/2

∣∣∣ Z] (union bound, H|X is finite)

=
∑

h∈H|X

P

[∣∣∣∣∣ 1
m

∑
i∈m

`(h, zi)− `(h, z′i)

∣∣∣∣∣ ≥ ε/2
∣∣∣ Z]

=
∑

h∈H|X

P

[∣∣∣∣∣ 1
m

∑
i∈m

Qi

∣∣∣∣∣ ≥ ε/2
∣∣∣ Z] (Qi = `(h, zi)− `(h, z′i))

=
∑

h∈H|X

2 exp
(
−ε

2m

8

)
(Hoeffding’s: Qi are independent,

E [Qi] = 0, Qi ∈ [−1, 1])

≤ τH(2m) · 2 exp
(
−ε

2m

8

)
. (

∣∣H|X ∣∣ ≤ τH(2m))

This establishes Claim II. Combining the two claims yields P [E1] ≤ 4τH(2m) exp
(
− ε

2m
8

)
,

completing the proof of Item (a).
To prove Item (b), the main idea is that by Sauer’s lemma τH(2m) ≤

( 2em
d

)d ≤ (2em)d,
so the number of possible projections h|X only grows polynomially in m, while Hoeffding’s
inequality above showed that the probability of the bad event for a particular h|X vanishes
exponentially in m. Namely,

P [E1] ≤ 4
(

2em
d

)d
exp

(
−ε

2m

8

)
. (10)

Seeing as the exponential factor dominates the polynomial factor, P [E1] m→∞−−−−→ 0. Numer-
ically, we need to show that taking m(d, ε, δ) as in the statement suffices to ensure that
P [E1] ≤ δ.

Claim III: For m(d, ε, δ) as in the statement, P [E1] ≤ δ.
It suffices to show that for m as in the statement, the expression in Eq. (10) is upper

UC Berke ley



8 The Fundamental Theorem of PAC Learning

bounded by δ. Rearranging this requirement yields:

4
(

2em
d

)d
exp

(
−ε

2m

8

)
≤ δ ⇐⇒ d ln

(
2em
d

)
− ε2m

8 ≤ ln
(
δ

4

)
⇐⇒ m ≥ 8

ε2

(
d ln

(
2em
d

)
+ ln

(
4
δ

))
⇐⇒ m ≥ 8d

ε2 ln(m) + 8
ε2

(
d ln

(
2e
d

)
+ ln

(
4
δ

))
⇐⇒ m ≥ a ln(m) + b, (11)

where a = 8d
ε2 and b = 8

ε2

(
d ln

( 2e
d

)
+ ln

( 4
δ

))
. Consider two cases:

Case I: b ≤ 0. To complete the proof it suffices to show that m ≥ a ln(m). By Claim 16
below, a sufficient condition for this to hold is that

m ≥ 2a ln(a) = 16d
ε2 ln

(
8d
ε2

)
,

which is satisfied for m ≥ m(d, ε, δ) as in the statement.
Case II: b > 0. By Claim 19 below, a sufficient condition for Eq. (11) to hold is that

m ≥ 4a ln(2a) + 2b.

Furthermore, because b > 0, it suffices to take m such that

m ≥ 4a ln(2a) + 4b

= 32d
ε2 ln

(
16d
ε2

)
+ 32
ε2

(
d ln

(
2e
d

)
+ ln

(
4
δ

))
= 32d

ε2 ln
(

16d
ε2 ·

2e
d

)
+ 32
ε2 ln

(
4
δ

)
= 32d

ε2 ln
(

32e
ε2

)
+ 32
ε2 ln

(
4
δ

)
,

which is satisfied for m ≥ m(d, ε, δ) as in the statement. J

I Remark 11.
The constants for the bound that appear in the proof are not tight.
For the case b > 0, we showed a stronger bound of m(d, ε, δ) = O

(
d ln(1/ε)+ln(1/δ)

ε2

)
.

I Exercise 12. Prove Theorem 8.

4 The Fundamental Theorem of PAC Learning

We have shown that classes with finite VC dimension have the uniform convergence property,
and so they are agnostic PAC learnable (and therefore PAC learnable). Together with the
lower bound of Claim 15 from Unit 4, this yields the following important characterization of
learnability.

I Theorem 13 (Fundamental Theorem of PAC Learning – Qualitative Version). Let X be a
nonempty set, and let H be a class of functions X → {0, 1}. The following conditions are
equivalent:

1. VC(H) <∞.
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2. H has the uniform convergence property.
3. Every ERMH algorithm is an agnostic PAC learner for H.
4. H is agnostic PAC learnable.
5. Every ERMH algorithm is a PAC learner for H.
6. H is PAC learnable.

Proof of Theorem 13. We show the following implications (see Figure 2):
1⇒ 2. This follows from Theorem 9, together with Remark 7.
2⇒ 3. This follows from Lemma 11 in Unit 4.
3⇒ 4⇒ 6 and 3⇒ 5⇒ 6. These implications are immediate from the definitions of
PAC and agnostic PAC learning.
6⇒ 1. This is the contrapositive of Claim 15 in Unit 4. J

Figure 2 Proof outline for Theorem 13.

Furthermore, it is possible to give quantitative bounds on the sample complexity for
classes with finite VC dimension.

I Theorem 14 (Fundamental Theorem of PAC Learning – Quantitative Version). Let X be a
nonempty set, and let H be a class of functions X → {0, 1}, and let d = VC(H). Assume
d = VC(H) <∞. Then there exist constants c0, c1, c2 > 0 such that:

1. H has the uniform convergence property with sample complexity

c0 ·
d+ ln(1/δ)

ε2 ≤ mUC
H (ε, δ) ≤ c1 ·

d+ ln(1/δ)
ε2 .

2. H is agnostic PAC learnable with sample complexity

c0 ·
d+ ln(1/δ)

ε2 ≤ m(ε, δ) ≤ c1 ·
d+ ln(1/δ)

ε2 .

3. H is PAC learnable with sample complexity

c0 ·
d+ ln(1/δ)

ε
≤ m(ε, δ) ≤ c1 ·

d ln(1/ε) + ln(1/δ)
ε

+ c2.

The upper bounds in Theorem 14 for the the realizable and agnostic cases are related
to Theorems 8 and 9 respectively. More specifically, Item 1 is similar to Theorem 9, and
Item 2 follows from Item 1 because uniform convergence implies agnostic PAC learnability

UC Berke ley



10 The Fundamental Theorem of PAC Learning

(by Lemma 11 in Unit 4). Similarly, for the realizable case, if the sample is an ε-net with
probability 1− δ then any ERMH algorithm is a PAC learner, and therefore Item 3 follows
from Theorem 8.

However, employing Theorem 9 to prove Items 1 and 2 in the manner just discussed
yields upper bounds of

c · d ln (d/ε) + ln (1/δ)
ε2 ,

which is not tight. This expression is a factor of ln (d/ε) larger than in the statement of
Theorem 14. Usually this would not make a big difference in practice, but nonetheless,
in upcoming units we will present an analysis using Rademacher complexity and covering
numbers, which provide a different perspective on this theorem and yield the tighter bounds.

For the lower bounds in Theorem 14, we have already seen that if ε and δ are constants
that are less than 1/8 then Claim 15 in Unit 4 implies a lower bound of Ω(d) on the sample
complexity. However, we will not prove the dependence of the lower bound on ε and δ that
is stated in the theorem. A proof is available in [10, Chapter 28]

5 Discussion

This unit tied together many of the notions we have seen so far in the course, creating one
unified theory of PAC learning. In a sentence, this can be summarized as follows: The VC
dimension determines the general outline of the growth function, which in turn determines
whether a class satisfies uniform convergence, which is equivalent to agnostic PAC learning,
which implies PAC learning, which (by the no free lunch theorems) implies a finite VC
dimension.

In the next two units we will see a different perspective on these issues, employing
Rademacher complexity, covering numbers, and chaining.

5.1 Bibliographic Notes
Theorem 8 is due to Haussler and Welzl [3]. See also [4, 8] for related results and a tighter
version of the theorem. Theorem 9 is due to Vapnik and Chervonenkis [12]. Sauer’s Lemma
(Lemma 2) was proved independently by Sauer [9] and by Shelah [11] (who gives credit to
Micha Perles). A slightly weaker version of the lemma was proved shortly before that by
Vapnik and Chervonenkis [12]. An alternative proof using linear algebra was given by Peter
Frankl and Janos Pach [7].

A good expositions of the material in this unit is available in [10, Chapters 6 and 28], as
well as in [2, Chapters 7–8], [5, Chapter 3], [13, Chapter 1], [1, Section 13.4], and [6, Chapter
3].
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A Useful Inequalities for Logarithms

B Claim 15. For all x > 0 : x > 2 ln(x).

Proof. Let f(x) = x− 2 ln(x). The claim holds because f is positive for all x > 0. To see
this, observe that f has a single global minimum at x = 2, because f ′(x) = 1− 2

x , which is
negative for x ∈ (0, 2) and positive for x ∈ (2,∞), and note that f(2) = 2(1− ln(2)) > 0. J

B Claim 16. For all x, a > 0 : x ≥ 2a ln(a) =⇒ x ≥ a ln(x).

Proof. Let f(x) = x− a ln(x). We need to show that x ≥ 2a ln(a) =⇒ f(x) ≥ 0.
First, observe that f has a single global minimum at x = a, because f ′(x) = 1− a

x , which
is negative for x ∈ (0, a) and positive for x ∈ (a,∞).

Second, note that if a ∈ (0, e) then f(x) ≥ 0 for all x > 0. Indeed, because f has a
minimum at x = a, it suffices to show that f(a) ≥ 0 whenever a ∈ (0, e):

f(a) ≥ 0 ⇐⇒ a(1− ln(a)) ≥ 0 ⇐⇒ ln(a) ≤ 1 ⇐⇒ a ∈ (0, e).

Thus, it suffices to prove the claim for a ≥ e.
Finally, assume a ≥ e and x ≥ 2a ln(a), we show that f(x) ≥ 0. Seeing as 2a ln(a) ≥ a

and f ′(x) is positive in (a,∞), it suffices to show that f(2a ln(a)) ≥ 0. Indeed,

f(2a ln(a)) ≥ 0 ⇐⇒ 2a ln(a) ≥ a ln (2a ln(a))
⇐⇒ a2 ≥ 2a ln(a)
⇐⇒ a ≥ 2 ln(a).

The last inequality holds for all a > 0 by Claim 15. J
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12 The Fundamental Theorem of PAC Learning

By contrapositive, this implies the following corollary.

B Claim 17. For all x, a > 0 : x < a ln(x) =⇒ x < 2a ln(a).

The following claim is a very similar, with a different proof.

B Claim 18. For all x, a > 0 : x ≤ a ln(x) =⇒ x ≤ 1
e−1 · ea ln(ea). Furthermore, if the

first inequality is strict, then so is the second one.

Proof. From monotonicity and concavity of the logarithm function,

ln(x) ≤ ln(x+ ea) ≤ ln(ea) + ln′(ea)x = ln(ea) + x

ea
.

Plugging this into the assumption yields

x ≤ a ln(x) ≤ a ln(ea) + x

e
,

and this implies

x ≤ 1
1− 1

e

· a ln(ea) = 1
e− 1 · ea ln(ea).

If the first inequality in the statement is strict, then so is this final inequality. J

B Claim 19. For all a ≥ 1 and b, x > 0 : x ≥ 4a ln(2a) + 2b =⇒ x ≥ a ln(x) + b.

Proof. Assume that x ≥ 4a ln(2a) + 2b. Because a ≥ 1:

x ≥ 4a ln(2a) + 2b ≥ 2b. (12)

From Claim 16 and the fact that b > 0:

x ≥ 4a ln(2a) + 2b ≥ 4a ln(2a) =⇒ x ≥ 2a ln(x). (13)

Combining Eq. (12) and (13),

x ≥ 2 ·max{a ln(x), b} ≥ a ln(x) + b. J
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