[12 pts]

Problem Set 3

Instructions:

- The topics for this problem set are:
 - Unit 4 Agnostic PAC, Uniform Convergence and the VC Dimension.
 - Unit 5 The Fundamental Theorem of PAC Learning.
- Before you start, make sure you are familiar with the course's Homework Policy.
- 1. Consider the following hypothesis class.

▶ Definition 1. Let $d \in \mathbb{N}$. A homogeneous halfspace of dimension d is a function $f_w : \mathbb{R}^d \to \{1, -1\}$ such that

 $f_w(x) = \operatorname{sign}(\langle w, x \rangle),$

where $w \in \mathbb{R}^{d,1}$ The class of homogeneous halfspaces of dimension d is

 $\mathcal{H}_d = \{ f_w : w \in \mathbb{R}^d \}.$

In this question we will compute the VC dimension of \mathcal{H}_d .

- (a) Show that there exists a set $A \subseteq \mathbb{R}^d$ such that |A| = d and \mathcal{H}_d shatters A. [5 pts]
- (b) Let $B = \{x^{(1)}, \ldots, x^{(d+1)}\} \subseteq \mathbb{R}^d$ be a set of cardinality d + 1. Show that there exist two disjoint sets $I, J \subseteq [d+1]$ at least one of which is nonempty, and positive scalars $\alpha_1, \ldots, \alpha_{d+1} \in \mathbb{R}$, such that

$$\sum_{i \in I} \alpha_i x^{(i)} = \sum_{j \in J} \alpha_j x^{(j)}.$$
[5 pts]

(c) Prove that $VC(\mathcal{H}_d) = d$.

Hint: Assume for contradiction that \mathcal{H}_d shatters B, and use the linearity of the inner product.

2. Recall that the growth function of a set *F* of functions $A \to B$ is

$$\tau_F(m) = \sup_{X \subseteq A, |X|=m} \left| F|_X \right|.$$

Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be sets. Let \mathcal{H} be a set of functions $\mathcal{X} \to \mathcal{Y}$, and let \mathcal{G} be a set of functions $\mathcal{Y} \to \mathcal{Z}$. Consider the set of compositions,

$$\mathcal{F} = \left\{ f : \mathcal{X} \to \mathcal{Z} \mid \exists h \in \mathcal{H} \; \exists g \in \mathcal{G} : \; f(x) = g(h(x)) \right\}.$$

Prove that $\tau_{\mathcal{F}}(m) \leq \tau_{\mathcal{H}}(m) \tau_{\mathcal{G}}(m).$ [16 pts]

¹ For all $t \in \mathbb{R}$, sign $(t) = \mathbb{1}(t \ge 0) - \mathbb{1}(t < 0)$.

2 Problem Set 3

3. In this question we will prove the following theorem from Unit 5.

▶ **Theorem 8.** There exists a constant c > 0 as follows. Let $\varepsilon, \delta \in (0, 0.9)$, let \mathcal{X} be a nonempty set, let \mathcal{D} be a distribution over $\mathcal{X} \times \{0, 1\}$, let \mathcal{H} be a class of functions $\mathcal{X} \to \{0, 1\}$, and assume $\mathsf{VC}(\mathcal{H}) = d < \infty$. Let $S \sim \mathcal{D}^m$, where

$$m \ge c \cdot \frac{d\ln(d/\varepsilon) + \ln(1/\delta)}{\varepsilon}.$$

Then with probability at least $1 - \delta$, S is an ε -net for \mathcal{H} with respect to distribution \mathcal{D} .

(a) Double sampling. Let S' ~ D^m be an additional sample taken independently of S. Define the following events:

$$E_1 = \{ \exists h \in \mathcal{H} : L_{\mathcal{D}}(h) > \varepsilon \land L_S(h) = 0 \}, E_2 = \{ \exists h \in \mathcal{H} : L_{\mathcal{D}}(h) > \varepsilon \land L_S(h) = 0 \land L_{S'}(h) \ge \varepsilon/2 \}.$$

Prove that $\mathbb{P}_{S \sim \mathcal{D}^m}[E_1] \leq 2\mathbb{P}_{S \sim \mathcal{D}^m, S' \sim \mathcal{D}^m}[E_2].$

(b) Symmetrization. Denote $S = (z_1, \ldots, z_m)$ and $S' = (z'_1, \ldots, z'_m)$. Consider two random variables $T = (t_1, \ldots, t_m)$ and $T' = (t'_1, \ldots, t'_m)$ that are generated according to the following process. For each $i \in [m]$, with probability 1/2 we assign

[5 pts]

[3 pts]

[10 pts]

 $t_i = z_i$ and $t'_i = z'_i$

and with probability 1/2 we make the opposite assignment, namely

 $t_i = z'_i$ and $t'_i = z_i$.

The assignment for each index i is chosen independently of the assignments for other indices. Let

$$E_3 = \{ \exists h \in \mathcal{H} : L_{\mathcal{D}}(h) > \varepsilon \land L_T(h) = 0 \land L_{T'}(h) \ge \varepsilon/2 \}.$$

Prove that $\mathbb{P}_{S \sim \mathcal{D}^m, S' \sim \mathcal{D}^m}[E_2] = \mathbb{P}_{T,T'}[E_3].$

- (c) Prove that $\mathbb{P}_{T,T'}[E_3] \leq \tau_{\mathcal{H}}(2m) \cdot 2^{\left(-\frac{\varepsilon m}{2}\right)}$. [10 pts]
- (d) Prove Theorem 8.

Hint: Show that it suffices to take m such that $m \ge c' \cdot \frac{d \ln(m/d) + \ln(1/\delta)}{\varepsilon}$ for some constant c' > 0. Next, you may use the following inequality without proof. Let $a \ge 1$ and b > 0. Then for all $x \in \mathbb{R}$: $x \ge 4a \ln(2a) + 2b \implies x \ge a \ln(x) + b$.

- (e) Prove that \mathcal{H} is PAC learnable with sample complexity $O\left(\frac{d\ln(1/\varepsilon) + \ln(1/\delta)}{\varepsilon}\right)$. Prove this directly using the theorem, the definitions of PAC learning and the definition of an ε -net. [8 pts]
- 4. Consider the following theorem.

▶ **Definition 2.** Let \mathcal{X} be a set, let \mathcal{H} be a class of functions $\mathcal{X} \to \{0, 1\}$, and let \mathcal{D} be a distribution over \mathcal{X} . The VC entropy of \mathcal{H} with respect to \mathcal{D} is

$$\mathsf{VCEnt}_{\mathcal{D},\mathcal{H}}(m) = \ln\left(\mathbb{E}_{S\sim\mathcal{D}^m}\left[\left|\mathcal{H}|_S\right|\right]\right)$$

▶ **Theorem 3.** There exists a constant c > 0 as follows. Let $\varepsilon, \delta \in (0, 0.9)$, let \mathcal{X} be a nonempty set, let \mathcal{D} be a distribution over $\mathcal{X} \times \{0,1\}$, let \mathcal{H} be a class of functions $\mathcal{X} \to \{0,1\}$. Let \mathcal{D}_x be the marginal distribution of \mathcal{D} over \mathcal{X} . Assume that $m \in \mathbb{N}$ satisfies

$$m \ge c \cdot \frac{\mathsf{VCEnt}_{\mathcal{D}_x, \mathcal{H}}(2m) + \ln(1/\delta)}{\varepsilon^2}$$

and let $S \sim \mathcal{D}^m$. Then with probability at least $1 - \delta$, S is an ε -representative sample for \mathcal{H} with respect to distribution \mathcal{D} and the 0-1 loss function.

(a) Prove Theorem 3.

[16 pts]

Hint: Carefully read the proof of Theorem 9 in Unit 5.

- (b) As a comparison between Theorem 3 and Theorem 9 in Unit 5, give an example where the guarantee provided by Theorem 3 is better than the guarantee provided by Theorem 9. Specifically, for $\varepsilon = \delta = \frac{1}{3}$, present a class \mathcal{H} of functions $\mathcal{X} \to \{0, 1\}$, a distribution \mathcal{D} over $\mathcal{X} \times \{0, 1\}$, and a number $m \in \mathbb{N}$ such the following two conditions hold:
 - $VC(H) = \infty$, so Theorem 9 does not guarantee that a finite sample will be ε-representative.
 - = Theorem 3 implies that with probability at least $1-\delta$, $S \sim \mathcal{D}^m$ is ε -representative. [10 pts]