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Unit 6

Rademacher Complexity

1 Introduction

In the previous unit we saw how the VC dimension controls the growth function, which in turn
determines the sample complexity of uniform convergence. In this unit we provide somewhat
different perspective on uniform convergence, via Rademacher complexity. The Rademacher
complexity depends both on the hypothesis class H and on the unknown distribution D,
in contrast to the VC dimension that depends solely on the hypothesis class. Thus, the
Rademacher complexity can be understood as an average-case analysis, in contrast to the
worst-case analysis offered by the VC dimension. As we will see in the next Unit, the more
nuanced Rademacher complexity analysis also lends itself to a technique called chaining,
which will allow us to eliminate the unnecessary logarithmic factor the that appeared in our
derivation of the fundamental theorem in the previous unit.

2 Concentration of Measure for Uniform Convergence

The following notation will be handy for our analysis of uniform convergence.

I Notation 1. We write

∆S(H) = sup
h∈H

∣∣LS(h)− LD(h)
∣∣,

∆+
S (H) = sup

h∈H
LS(h)− LD(h),

∆−S (H) = sup
h∈H

LD(h)− LS(h),

where H is a class of functions, S is a sample, D is a distribution, and the loss function
should be understood from the context. y

Uniform convergence means that if S is a large i.i.d. sample then with high probability ∆S(H)
is small. The following claim says that ∆S(H) is close to its expectation. This implies that,
in order to show that ∆S(H) is small, it will suffice to bound its expectation.

B Claim 2. Let X and Y be nonempty sets, let H be a class of functions X → Y, let
` : Y2 → [0, 1] be a loss function, and let D be a distribution over X × Y. Then for any
m ∈ N and ε > 0,

PS∼Dm
[
∆S(H) ≥ E

S′∼Dm
[∆S(H)] + ε

]
≤ exp

(
−2mε2) ,

and similarly,

PS∼Dm
[
∆+
S (H) ≥ E

S′∼Dm

[
∆+
S (H)

]
+ ε
]
≤ exp

(
−2mε2) ,

PS∼Dm
[
∆−S (H) ≥ E

S′∼Dm

[
∆−S (H)

]
+ ε
]
≤ exp

(
−2mε2) . y
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2 Probably Approximately Correct Definition

This claim follows from the following concentration-of-measure theorem.

I Theorem 3 (McDiarmid’s Inequality). Let Ω be a set and let f : Ωm → R be a function.
Assume there exist c1, . . . , cm ∈ R such that f satisfies the following bounded differences
property:

∀z1, . . . , zm, z
′
1, . . . , z

′
m ∈ Ω ∀i ∈ [m] :
|f(z1, . . . , zi, . . . , zm)− f(z1, . . . , z

′
i, . . . , zm)| ≤ ci.

Let Z1, . . . , Zm be independent random variables taking values in Ω. Then for any ε > 0,

P
[
f(Z1, . . . , Zm)− E [f(Z1, . . . , Zm)] ≥ ε

]
≤ exp

(
−2ε2∑n
i=1 c

2
i

)
and

P
[
E [f(Z1, . . . , Zm)]− f(Z1, . . . , Zm) ≥ ε

]
≤ exp

(
−2ε2∑n
i=1 c

2
i

)
.

I Remark 4.
In the special case where ci = 1/m for all i ∈ [m], the bound specifies to exp

(
−2mε2).

McDiarmid’s inequality is a generalization of Hoeffding’s inequality. Hoeffding’s is
a concentration of measure result for the average of independent random variables,
whereas McDiarmid’s is a concentration of measure result for any function of indepen-
dent random variables that satisfies the bounded differences property (including the
average).
McDiarmid’s inequality is very powerful, because the function f can be arbitrarily
complex so long as it satisfies the bounded differences property. Below we will apply
McDiarmid’s inequality to the function f(S) = ∆S(H), which is a non-trivial function
that involves a supremum over a possibly infinite class H.

I Exercise 5. Prove Theorem 3.

Proof of Claim 2. We prove the first inequality, the proof for the other two inequalities is
similar.

Fixm ∈ N. First, we claim that ∆S(H) satisfies the following bounded differences property.
For any S, S′ ∈ (X ×Y)m with S =

(
(x1, y1), . . . , (xm, ym)

)
, S′ =

(
(x′1, y′1), . . . , (x′m, y′m)

)
, if

there exists j ∈ [m] such that such that (xi, yi) = (x′i, y′i) for all i 6= j, then

|∆S(H)−∆S′(H)| ≤ 1
m
. (1)

To see this, notice that

∆S′(H) = sup
h∈H

∣∣LS′(h)− LD(h)
∣∣ = sup

h∈H

∣∣LS′(h)− LS(h) + LS(h)− LD(h)
∣∣

≤ sup
h∈H

∣∣LS′(h)− LS(h)|+ |LS(h)− LD(h)
∣∣

= sup
h∈H

∣∣∣∣`(h(x′j), y′j)− `(h(xj), yj)
m

∣∣∣∣+ |LS(h)− LD(h)
∣∣

≤ 1/m + sup
h∈H
|LS(h)− LD(h)

∣∣
= 1/m + ∆S(H).

Applying the same argument with roles of S and S′ reversed implies that |∆S(H)−∆S′(H)| ≤ 1/m.
Hence, by McDiarmid’s inequality,

PS∼Dm
[
∆S(H) ≥ E

S′∼Dm
[∆S′(H)] + ε

]
≤ exp

(
−2ε2∑m
i=1(1/m)2

)
= exp

(
−2mε2) . J
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3 Definition of Rademacher Complexity

I Definition 6. Let A ⊆ Rm be a bounded set of vectors.1 The Rademacher average of A is

Rad(A) = Eσ∈{±1}m

[
sup
a∈A

σ · a
m

]
= Eσ∈{±1}m

[
sup
a∈A

1
m

m∑
i=1

σiai

]
,

where σ = (σ1, . . . , σm) is a vector of random variables (called Rademacher variables) chosen
independently and uniformly from {1,−1}.

The Rademacher average quantifies how well A correlates with a random vector σ ∈ {±1}m.
Similarly, the following definition quantifies the richness or complexity of a class of functions
by measuring how well the functions can correlate with random labels.

I Definition 7. Fix m ∈ N. Let X be a nonempty set, and let F be a class of functions
X → [−1, 1]. For any set S = (x1, . . . , xm) ∈ Xm, let

F(S) =
{(
f(x1), . . . , f(xm)

)
: f ∈ F

}
⊆ Rm.

(i) Fix S ∈ Xm. The empirical Rademacher complexity of F with respect to S is

RadS(F) = Rad(F(S)) = Eσ∈{±1}m

[
sup
f∈F

1
m

m∑
i=1

σif(xi)
]
.

(ii) Let D be a distribution over X . The Rademacher complexity of size m of F with respect
to D is

RadD,m(F) = ES∼Dm [Rad(F(S))] = ES∼Dm,σ∈{±1}m

[
sup
f∈F

1
m

m∑
i=1

σif(xi)
]
.

We will simply write Radm when D is understood from context.

4

I Definition 8. Let X and Y be sets, let H be a class of functions X → Y, and let
` : Y2 → [0, 1] be a loss function. The loss class of H with respect to ` is

L = {(x, y) 7→ `(h(x), y) : h ∈ H}.

(Namely, the loss class L is a set of functions X × Y → R.)

B Claim 9. Let X be a set, let H be a class of functions X → {1,−1}, and let

L = {(x, y) 7→ 1(h(x) 6= y) : h ∈ H}

be the loss class of H with respect to the 0-1 loss. Let S =
(
(x1, y1), . . . , (xm, ym)

)
∈

(X × {±1})m be a sample, and let Sx = (x1, . . . , xm). Then

RadS(L) = 1/2 · RadSx(H).

1 Namely, there exists M ∈ R such that ‖v‖2 ≤M for all v ∈ A.
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4 Probably Approximately Correct Definition

Proof.

RadS(L) = Eσ∈{±1}m

[
sup
h∈H

1
m

m∑
i=1

σi1(h(xi) 6= yi)
]

= Eσ∈{±1}m

[
sup
h∈H

1
m

m∑
i=1

σi
(1− yih(xi))

2

]

= 1
2Eσ∈{±1}m

[
sup
h∈H

1
m

m∑
i=1

σi + 1
m

m∑
i=1

σi(−yi)h(xi)
]

= 1
2Eσ∈{±1}m

[
1
m

m∑
i=1

σi + sup
h∈H

1
m

m∑
i=1

σi(−yi)h(xi)
]

= 1
2Eσ∈{±1}m

[
sup
h∈H

1
m

m∑
i=1

σi(−yi)h(xi)
]

(E [Σmi=1σi] = 0)

(?)= 1
2Eσ∈{±1}m

[
sup
h∈H

1
m

m∑
i=1

σih(xi)
]

= 1
2 · RadSx(H),

where (?) holds because σi and σi(−yi) have the same distribution. J

I Exercise 10. Show that if H is a class of functions X → {0, 1} then RadS(L) = RadSx(H).

I Lemma 11. Let X and Y be nonempty sets, and let H be a class of functions X → Y. Let
L be the loss class of H with respect to some loss function ` : Y2 → [0, 1]. Then for any
distribution D over X × Y and m ∈ N,

ES∼Dm
[
∆+
S (H)

]
≤ 2RadD,m(L), and

ES∼Dm
[
∆−S (H)

]
≤ 2RadD,m(L).

Proof. We will present the proof for the first inequality, the proof for the second inequality
is similar. Note that

ES∼Dm [LS(h)] = 1
m

∑
i∈[m]

ES∼Dm [`(h(xi), yi)] = 1
m

∑
i∈[m]

LD(h) = LD(h). (2)

Hence, we can use the double sampling technique to express ES∼Dm
[
∆+
S (H)

]
as an

expectation concerning a finite sample:

ES∼Dm
[
∆+
S (H)

]
= ES∼Dm

[
sup
h∈H

LS(h)− LD(h)
]

= ES∼Dm
[

sup
h∈H

LS(h)− ES′∼Dm [LS′(h)]
]

= ES∼Dm

sup
h∈H

ES′∼Dm

 1
m

∑
i∈[m]

`(h(xi), yi)− `(h(x′i), y′i)


= ES∼Dm

sup
h∈H

ES′∼Dm

 1
m

∑
i∈[m]

Qi(h)


≤ ES∼Dm,S′∼Dm

sup
h∈H

1
m

∑
i∈[m]

Qi(h)

 ,
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Figure 1 Intuition for the symmetrization technique. The supremum chooses one row from this
matrix of random variables. The entire matrix has the same distribution whether or not we swap
some subset of the examples in S and S′.

where we used the notation Qi(h) = `(h(xi), yi)− `(h(x′i), y′i).
S and S′ are independent and have the same distribution, and therefore we can view

the samples from S and S′ as being interchangeable. Formally, we use the following
symmetrization technique (we already saw a variant of this technique in the previous
unit). Each random variable Qi(h) = `(h(xi), yi) − `(h(x′i), y′i) is equal in distribution to
−Qi(h) = `(h(x′i), y′i)− `(h(xi), yi), because flipping the sign corresponds to swapping the
names of (xi, yi) with (x′i, y′i) for some i. Moreover, if we introduce Rademacher variables σi
(that are independent and uniform over {±1}), then the entire matrix (Qi(h))i∈[m],h∈H is
equal in distribution to the matrix (σiQi(h))i∈[m],h∈H, for the same reason (see also Figure 1).
Hence,

E
S∼Dm
S′∼Dm

sup
h∈H

1
m

∑
i∈[m]

Qi

 = E
S∼Dm
S′∼Dm
σ∼{±1}m

sup
h∈H

1
m

∑
i∈[m]

σiQi



= E

sup
h∈H

1
m

∑
i∈[m]

σi (`(h(xi), yi)− `(h(x′i), y′i))


≤ E

sup
h∈H

1
m

∑
i∈[m]

σi`(h(xi), yi) + sup
h∈H

1
m

∑
i∈[m]

(−σi)`(h(x′i), y′i)


= E

sup
h∈H

1
m

∑
i∈[m]

σi`(h(xi), yi)

+ E

sup
h∈H

1
m

∑
i∈[m]

(−σi)`(h(x′i), y′i)


= 2RadD,m(L),

Where the last equality uses the fact that σi and −σi have the same distribution. J

As a corollary, we obtain the following PAC learning bounds.
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6 Probably Approximately Correct Definition

I Theorem 12. Let δ ∈ (0, 1), let X and Y be nonempty sets, let H be a class of functions
X → Y, and let D be a distribution over X × Y. Let ` : Y2 → [0, 1] be a loss function. Let
S ∼ Dm for some m ∈ N.

(i) With probability at least 1− δ,

∀h ∈ H : LD(h) ≤ LS(h) + 2RadD,m(L) +
√

ln(1/δ)
2m ,

where L is the loss class of H w.r.t. `.
(ii) Assume Y = {±1} and ` is the 0-1 loss. Then with probability at least 1− δ,

∀h ∈ H : LD(h) ≤ LS(h) + RadDx,m(H) +
√

ln(1/δ)
2m .

(iii) Assume Y = {±1}, ` is the 0-1 loss, and let h be the output of an ERMH algorithm
executed on S. Then with probability at least 1− δ,

LD(h) ≤ inf
h′∈H

LD(h′) + 2RadDx,m(H) +
√

2 ln(2/δ)
m

.

Proof.

(i) Denote ε =
√

ln(1/δ)
2m . From Claim 2,

PS∼Dm
[
∆−S (H) ≥ E

S′∼Dm

[
∆−S′(H)

]
+ ε
]
≤ exp

(
−2mε2) = δ.

Hence, with probability at least 1− δ it is the case that ∆S(H) ≤ E [∆S′(H)] + ε, and
then for all h ∈ H,

LD(h) = LS(h) + (LD(h)− LS(h))
≤ LS(h) + ∆−S (H)
≤ LS(h) + E

[
∆−S′(H)

]
+ ε

≤ LS(h) + 2RadD,m(L) + ε. (Lemma 11).

(ii) Follows from Item (i) and Claim 9.
(iii) Conceptually, this follows from (ii) together with the fact that uniform convergence

implies that any ERM algorithm is a PAC learner (Lemma 11 in Lecture 3). More
fully, choosing ε =

√
2 ln(2/δ)
m , Claim 2 implies that

PS∼Dm
[
∆+
S (H) ≥ E

S′∼Dm

[
∆+
S′(H)

]
+ ε/2

]
≤ exp

(
−2m(ε/2)2) = δ/2, (3)

PS∼Dm
[
∆−S (H) ≥ E

S′∼Dm

[
∆−S′(H)

]
+ ε/2

]
≤ exp

(
−2m(ε/2)2) = δ/2. (4)

Hence, with probability at least 1− δ, for any h∗ ∈ H,

LD(h) ≤ LD(h)− LS(h)︸ ︷︷ ︸
≤∆−

S
(H)

+LS(h)− LS(h∗)︸ ︷︷ ︸
≤0

+LS(h∗)− LD(h∗)︸ ︷︷ ︸
≤∆+

S
(H)

+LD(h∗)

≤ LD(h∗) + E
S′∼Dm

[
∆−S′(H)

]
+ E
S′∼Dm

[
∆+
S′(H)

]
+ ε (From (3) and (4))

≤ LD(h∗) + 4RadD,m(L) + ε, (Lemma 11)
≤ LD(h∗) + 2RadDx,m(H) + ε, (Claim 9)

as desired. J
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5 Bounding the Rademacher Complexity

Theorem 12 shows that to obtain PAC learning bounds, it suffices to bound the Rademacher
complexity.

5.1 Estimating the Rademacher Complexity
In some cases, it is possible to show that the Rademacher complexity is small by estimating it
empirically. Namely, one can take samples from the unknown distribution and compute the
empirical Rademacher complexity. By McDiarmid’s inequality, the empirical Rademacher
complexity is close to the Rademacher complexity. This yields a version of Theorem 12 that
contains the empirical Rademacher complexity instead of the Rademacher complexity.

Note that for a fixed sample S, the empirical Rademacher complexity is defined as an
average over all possible assignments to the Rademacher variables, so computing it would
appear to require exponential time in the number of samples in S. To over come this, one
can instead estimate the empirical Rademacher complexity by sampling a small number
of vectors of Rademacher variables uniformly at random, and taking the average only over
these vectors. By Hoeffding’s inequality, this estimate converges exponentially fast to the
empirical Rademacher complexity, and this can again yield a bound similar to Theorem 12,
that involves only the estimate of the empirical Rademacher complexity.

Unfortunately, the computational complexity can be prohibitive even if we attempt only
to estimate the empirical Rademacher complexity as outlined above. This is because for any
fixed sample S and vector of Rademacher variables σ, computing supf∈F 1

m

∑m
i=1 σif(xi) is

a combinatorial optimization problem that involves searching over the entire class F . For
many hypothesis classes, this optimization problem can be NP-hard.

5.2 Combinatorial Bound on the Rademacher Complexity
Another approach is to bound the Rademacher Complexity using the VC dimension. This is
tantamount to saying that the average-case analysis offered by the Rademacher complexity
is upper bounded by the worst-case analysis offered by the VC dimension.

5.2.1 Massart’s Lemma
I Lemma 13 (Maximal Inequality). Let n ∈ N, let v > 0, let Z1, . . . , Zn be real-valued random
variables, and assume that for all i ∈ [n] and λ > 0,

ψZi(λ) ≤ λ2v

2 .

Then

E [max {Z1, . . . , Zn}] ≤
√

2v ln(n).

I Remark 14. The variables Z1, . . . , Zn in the lemma might not be independent.

Proof. For any λ > 0,

exp
(
λE [max {Z1, . . . , Zn}]

)
= exp

(
E
[
λ max
i∈[n]

Zi

])
≤ E

[
exp

(
λ max
i∈[n]

Zi

)]
(Jensen’s inequality)

UC Berke ley



8 Probably Approximately Correct Definition

= E
[
max
i∈[n]

eλZi
]

≤ E

∑
i∈[n]

eλZi


=
∑
i∈[n]

E
[
eλZi

]
≤
∑
i∈[n]

e
λ2v

2 = ne
λ2v

2 .

Taking logarithms on both sides yields

E [max {Z1, . . . , Zn}] ≤
ln(n)
λ

+ λv

2 .

Choosing λ =
√

2 ln(n)
v , which minimizes the right hand side, we obtain

E [max {Z1, . . . , Zn}] ≤
√

2v ln(n). J

I Lemma 15 (Finite Class, Massart [9]). Let A ⊆ Rm be a finite subset, and assume there
exists r ∈ R such that ∀x ∈ A : ‖x‖2 ≤ r. Then

Rad(A) ≤
r
√

2 ln (|A|)
m

.

Proof. Write

Rad(A) = E
σ∈{±1}m

[
sup
a∈A

σ · a
m

]
= 1
m
E
[
max
a∈A

Za

]
, (5)

where Za =
∑m
i=1 σiai, and we used the fact that A is finite. By Hoeffding’s Lemma

(Lemma 13 in Unit 3),

ψσiai(λ) ≤ λ2(2ai)2

8 = λ2a2
i

2 .

Hence,

ψZa(λ) = ψ(
∑m

i=1
σiai)(λ) =

m∑
i=1

ψσiai(λ) ≤
m∑
i=1

λ2a2
i

2 ≤ λ2r2

2 .

Lemma 13 implies that

E
[
max
a∈A

Za

]
≤ r
√

2 ln(|A|). (6)

Combining Eq. (5) and (6) implies the lemma. J

5.2.2 Learning Bounds for VC Classes from Rademacher Complexity
As a corollary from Lemma 15, the Rademacher complexity is bounded by the VC dimension.
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I Theorem 16. Let X be a nonempty set, and let F be a set of functions X → {0, 1}, and
let D be a distribution over X . Then for all m ∈ N,

RadD,m(F) ≤ sup
S∈Xm

RadS(F) ≤
√

2 ln (τF (m))
m

≤ O

(√
ln (m/d)
(m/d)

)
,

where the last inequality holds if VC(F) = d ≤ ∞.

Proof. The first inequality is immediate from the definition of RadD,m(F). For the second
inequality, for any S ∈ Xm,

RadS(F) def= Rad(F(S))
(Massart)
≤

(
max
f∈F
‖f(S)‖2

)
·
√

2 ln (|F(S)|)
m

≤
√

2 ln (τF (m))
m

.

We used the fact that

max
f∈F
‖f(S)‖2 ≤ ‖(1, . . . , 1)‖2 =

√
m.

The final inequality in the statement follows from Sauer’s Lemma, which states that τF (m)

is at most (em/d)d, and so
√

2 ln(τF (m))
m ≤

√
2(ln(m/d)+1)

(m/d) . J

6 Discussion

Combining Theorems 16 and 12 (iii) yields the following learning bound for binary classifica-
tion using an ERM algorithm with respect to the 0-1 loss:

LD(h) ≤ inf
h′∈H

LD(h′) + 2RadDx,m(H) +
√

2 ln(2/δ)
m

≤ inf
h′∈H

LD(h′) +O

(√
ln (m/d)
(m/d)

)
+
√

2 ln(2/δ)
m

≤ inf
h′∈H

LD(h′) +O

(√
d ln (m/d) + ln(1/δ)

m

)
.

In particular this implies (via a direct calculation2) that taking

m = O

(
d ln (1/ε) + ln(1/δ)

ε2

)
samples is sufficient for agnostic PAC learning a class of binary functions of VC dimension d
with accuracy ε and confidence 1− δ. However, the fundamental theorem states a stronger
bound of O

(
d+ln(1/δ)

ε2

)
. In the next unit we will use connections between the Rademacher

complexity and covering numbers to obtain that stronger bound.

2 Sketch: clearly, this suffices to ensure that
√

2 ln(2/δ)
m ≤ ε

2 . Furthermore,
√

ln(x)
(x) ≤ ε ⇐⇒ x

ln(x) ≥
1
ε2 .

Taking x = 3
ε2 ln( 1

ε2 ) implies x
ln(x) = 1

ε2 ·
ln( 1

ε2 ·
1
ε2 ·

1
ε2 )

ln(3· 1
ε2 ·ln( 1

ε2 )) > 1
ε2 for all ε ≤ 1√

3 . Therefore, taking

m
d ≥ O( 1

ε2 ln( 1
ε2 )) suffices to ensure that O

(√
ln(m/d)
(m/d)

)
≤ ε

2 .

UC Berke ley



10 Probably Approximately Correct Definition

6.1 Bibliographic Notes
The analysis of uniform convergence via Rademacher complexity was introduced by [6, 5, 1].
See also [2, 7]. Massart’s Lemma is due to [9] (see also exposition in [3]).

Good expositions of the Rademacher complexity analysis are available in [10, Chapter 3],
as well as [4, Chapters 6], [8, Section 3.8] and [11, Section 1.8].
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