
Machine LearningMachine Learning:
a 1-semester course in 2 hrs

PAC Learning:
Complexity Treatment

Shafi Goldwasser

PAC- Terminology

• Alg is given sample S = {(x,y)} drawn from
distribution P over instance space X, labeled by
some Boolean target function f in concept class
C, i.e y=f(x)

• [say x is positive example or x in f: f(x)=1]

• Goal: Algo produces hypothesis h in class H which

is ε-close to f over distribution P.

Concepts vs. Representation
• C specifies both a concept and

representation with an associated size
• Ex: C={<x1…xn , f(x1…xn)=xor (a1x1…anxn)>}

– with Representation: Boolean circuit (size n), or
DNF (size is exponential in n)

• Ex: convex polytope
– Representation: list of vertices or linear

equations to define the faces of the polytope.

PAC learning; focus on
complexity today

Let X = {Xn} = {0,1}n (or n-dim Euclidean space)
Let C={Cn } where Cn is a representation class over Xn

Algo A PAC-learns concept class C by hypothesis
class H if for any unknown target f in C any
distribution P over X, any ε, δ > 0,

– A uses at most poly(n,1/ε,1/δ, size(f)) examples and
running time to produce h.

– with probability 1-δ
 h in H & h agrees with f with error at most ε.
 (allows failure w.prob δ: S may be non-representative)

Algorithmic/model issues

•
PAC model talks of learning C by H.

Representation independence =
H is Efficient to evaluate

•

•

•

• To: learn 3-term DNP
• From deciding: 3-coloring graph

Reduction: We reduce graphs G to set of examples S to
emulate an oracle over uniform distribution in S

s.t. G is 3-colorable if S is consistent with some k-term

Set ε =1/2|S|. If there exists 3-term DNF consistent with S,
learning algo will find h which is consistent with S
(otherwise errs with 2ε)., If there is no 3-term DNF
consistent with a 3-term DNF, algorithm will not find it..

Given graph G=(V,E): construct set S of examples over n vars

– Positive: For every vertex i in V={1…n}, add example
(v(i),1) where v(i)=(1..101..1 ,with 0 only in the ith position. Namely,

xj=1 except for j=i where xi=0 makes the DNF true.
– Negative: For ever edge (i,j) , add example
(e(i,j),0) where e(i,j)=(11101110111) with 0 in i and j- positions.
Namely, when xk=1 except that xi=xj=1 makes the DNF false.
Claim: G is 3-colorable implies S is consistent with 3-term DNF
Pf: Fix legal coloring, let R={ red vertices i}, B={blue vertices},

B={black vertices}. Fix TR (TB, TB)=conjunction of variables
whose are not colored R (B and C analogously). Then for each
vertex i, colored R, v(i) satisfies TR since it only gave 0 to
variable xi which does not appear in TR. Similarly for B and B

Furthermore, edge e(i,j) will not satisfy TR (or TR, TB) since both I
and J cannot be colored red , one of them must appear in TR
and since its 0 it will make TR false. T

Claim 2: Suppose formula TRvTBVTB is consistent
with S. Then G is 3-colorable
Pf: set the coloring as follows: set the color of
vertex i is R if v(i) satisfies TR (analogously TB & TB)
-Since the formula is consistent with S, every v(i)
satisfies some TC , and each vertex has a color.
-Furthermore, coloring is legal since if i and j are
assigned same color then both v(i) and v(j) satisfy
same Tc but i-th bit of v(i) is 0 and i-th bit of v(j) is
1 so they cant both appear in same Tc.
Also, v(i) and e(i,j) only differ in the j-th bit, so if
v(i) satisfies Tc so does e(i,j) and (i,j) is not an
edge.

[PittValiant]: Its all about
representation

Claim 2: k-term DNF is learnable by k-CNF

Claim [Valiant]:k-CNF is properly learnable by
k-CNF.

Corollary: k-term DNF can be learnable by a
k-CNF.

[PittValiant]: More
impossibilities

Claim 2: K-Boolean-threshold not
PAC-learnable

•K-Boolean threshold:
– Fix y in {0,1}n.
– Then all x s.t. inner product xy>k mod 2

•Reduction from 0/1 integer programming
which is NP-complete

[GoGoMi] How about Hardness which
is Representation Free?

• Construct a concept class C
• Show that its hard to learn independently

of H, i.e for any H which is polynomial
time circuit family

• Assumption: One-Way Functions exist

One-way Functions (Informally)

F

domain
range

Easy to
compute

Hard to
invert

Def: One-way Functions

Special cases: One-way Permutations:

• Can always find an inverse with unbounded
time

but should be hard with probabilistic polynomial time

One-way Functions: Candidates

One-way functions candidates are abundant
in nature.
Can construct a universal one-way function .

G-1: intuitively hard to “learn”
To put in our framework, One Way Boolean
Functions?

.

Hardcore Bits

But… you may be able to compute some bit of x

Exercise: There are one-way functions for which it is
easy to compute the first half of the bits of the
inverse.

Hardcore Bits

But… you may be able to compute some bit of x

Exercise: There are one-way functions for which it is
easy to compute the first half of the bits of the
inverse.

• Any bit can be guessed correctly w.p. 1/2

From Hardcore Bits to Hardcore
Predicates

x

Easy to

compute

Easy to compute

F(x)

B(x)

Hard to
compute

Every OWF Has an Associated Hard Core
Predicate [GL]

A concept which is
Representation-Free Hard to Learn

• Let F be a family of one-way functions
• Let B be the associated hard-core Boolean

predicate for F

• Concept Cn={(f(x), B(x): f in Fn}
– Easy to compute if you know x
– Hard to learn if you don’t know x
– Reduction: if can (weakly) learn B can invert f,

contradiction!
– Note: can even generate samples. Take z in

domain of f, then {f(z), B(z)} is in C.

What about membership queries?

•

Boolean Pseudo Random
Functions(PSRF) [GGM86]

•

Boolean Pseudo Random
Functions(PSRF)

•

NOTE: Df makes polynomial queries to f

f in Hn

D

x f(x)

Phase 1 Phase 1

f in Fn

D

x f(x)

Prob (Df says 1 in Phase 2) ≈ Prob (D says 1 in phase 2)

Pseudo-Random F is
indistinguishable from Random

Existence of PSRF’s
Theorem: If one-way functions exist, then
collections of pseudo random functions exist

Proof: Start with length doubling strong pseudo
random generator (PRG) G:{0,1}n ->{0,1}2n

Next. PSRF tree Like Construction

G0(S) G1(S)

S

G0(G0(S))

G1(G0(G0(s)))

fs (x) = Gx(s) =LSB(label of leaf x) e.g. fi(0000)= LSB(G0(G0
(G0(G0((s)))))

Set PSRF family F= {Fn} and Fn={fs}|s|=n

G0(s) = Run PRG G:{0,1}n ->{0,1}2n on
seed s and output the first n output bits

G1(s) = Run a PSRG G:{0,1}n ->{0,1}2n on
seed s and output the 2nd n output bits
G00(s) = G0(G0(s))
G01(s) = G1(G0(s)) …
Gx(s) = Gxnxn-1 x1(s) =Gxn(Gxn-1 (…Gx1(s)…))

Each leaf corresponds to path x∈{0,1}n.

 Hybrid Argument

S0
S1

S

G0(S0)

G1(G0(S0))

n-i

i

Di

pi = prob (g∈Di: D
g (1n) =1

|).

Theorem: If G is strong PRG, then F is psrf

Theorem: If G is cs-prg, then F is psrf

Proof outline: By contradiction. Assume, algorithm Df exists
which “distinguishes” Fn from Hn with probability ε after poly many
queries to f (f is either from Fn or all from Hn), then can construct
algorithm A to “distinguish” outputs of G(Un

) from U2n with
probability ε’= ε/n

Hybrid argument by levels of the tree
 Di : functions defined by filling truly random labels in nodes at

level i and then filling lower levels with Pseudo-random values
from i+1 down to n
Let pi = prob (f∈Di : D

f (1n) =1).
Then p1 = prob (f∈Fn: D

f (1n) =1) and
 pn = prob (f∈Hn: D

f(1n) =1)
 and |pn-p1|>ε ⇒∃ 1<i<n s.t. ⏐pi - pi -1⏐≥ ε/n= ε’

Evaluating PSRF
• Given s, n sequential invocations of G
• Polynomial Time but a high polynomial, O(n)

evaluations of G (depth)*
 O(n) evaluations of f (per node)

But does the job, its polynomial time!
Let Fn be a collection of PSRF,
Unlearnable concept class by any polynomial time

algorithm={cs }where
cs={(x,fs(x))} even if learning algorithm can query

for f(x) of x of its choice

From Learning to Cryptography:
Interesting Consequences

• PRFs cannot be implemented by linear
threshold functions as can be learned

• PRF cannot be implemented by polynomial
size formula in DNF form, as can be
learned for uniform distribution

• etc

Kearns Valiant 87
• Very nice GGM, so there exists poly-time C

which cannot be PAC learned independent of
representation

• But maybe all C which can be evaluated by
simple computational models (within P), can be
PAC-learned

• KV87: if Factoring is hard (or RSA is hard to
invert or discrete log is hard), then the
following cannot be PAC learned
– the class Cn of polynomial size, log (n) depth, fanin-2

Boolean circuits
– Finite automata, Constant depth threshold

Klivans Shertov

• if approximating unique Shotest Vector
in Lattice (uSVP) is hard then
intersection of half spaces is not
PAC-learnable independent of
representation

• Σaixi >t

• Previously: only proper learning
impossibility

Review: Number Theory

Let’s review some number theory .

• the order of the group is

The RSA Trapdoor Permutation

Key Theorem[ACGS86]: LSB(x) is a hardcore
predicate for RSA(x).
Can use an oracle to LSB(X) which guesses non-
negligebly better than random to invert RSA(x)

Kearns Valiant Concept Class

•

Kearns Valiant Concept Class is
Hard to Learn

•

Kearns Valiant: C is in NC1 circuit
•

Augmented PRFs [2003 -
present]

Type Applications Assumptions

Key homomorphic Updatable encryption,
Distributed PRFs

LWE

Related-key
secure

Tweakable block cipher,
Simpler CBC-MAC

DDH + CRH

Constrained Applications of IO OWF
Multilinear maps

Algebraic Oblivious PRF evaluation,
Verifiable computation

DDH

PRFs and Learning: Still hard to
Learn even when

PRFs
Constrained

Aggregate

Key homomorphic

Related-key secure

Learning is HARD
Can label some of the
examples of the
concept yourself
Can get sums of labels
in an interval you
specify
Labels satisfy arithmetic

Can receive answers to
Queries on related
concepts

Constrained PRFs [2013]

retains pseudorandomness on

