PAC Learning:
Complexity Treatment

Shafi Goldwasser

PAC- Terminology

+ Alg is given sample S = {(x,y)} drawn from
distribution P over instance space X, labeled by
some Boolean target function f in concept class
C,i.e y=f(x)

* [say x is positive example or x in f: f(x)=1]

* Goal: Algo produces hypothesis h in class H which
is e-close to f over distribution P.

Concepts vs. Representation

+ C specifies both a concept and
representation with an associated size

+ Ex: C={<x..x_, f(x,..x)=xor (a,,..a X)>}

- with Representation: Boolean circuit (size n), or
DNF (size is exponential in n)

* Ex: convex polytope

- Representation: list of vertices or linear
equations to define the faces of the polytope.

PAC learning; focus on
complexity today

Let X = {X }={0,1}" (or n-dim Euclidean space)
Let C={C, } where C is a representation class over X_

Algo A PAC-learns concept class C by hypothesis
class H if for any unknown target f in C_any
distribution P over X, any ¢, 6 > O,

- A uses at most poly(n,1/¢,1/5, size(f)) examples and
running time to produce h.

- with probability 1-6
hinH & h agrees with f with error at most «.
(allows failure w.prob 3: S may be non-representative)

Algorithmic/model issues

PAC model talks of learning C by H.

~ In practice, most natural to fix H, allow C to be
arbitrary.
- His under our control, target function isn't
- Try to find reasonable h in H if one exists.

- Today will see negative results on what can
cannot be PAC-learned when
- C=H (proper),
- C # H (improper) and

Representation independence =
H is Efficient to evaluate

« Efficient (Non-uniform) Algorithm:
CKT={CKT,} poly-size circuits over n inputs

 H should be efficient to evaluate : 3an efficient
algorithm that on xeX, and h € H, computes h(x) in
time poly(n, |h|). Why? Otherwise makes little sense.

Furthermore, consider only poly-time target function
Schapire: any representation class C which is not
polynomial time evaluable can not be learned

[PittValiant]: NP = RP =>
Proper Learning Impossibility

« Claim: K-term-DNF not PAC-learnable by k-term
DNP if NP #RP

* K-term DNP: T,vT,v..T,where each T;is conjunction of
subsets of literals of x;...x,

- Size = 2kn

» Show Reduction from NP-complete problem of k
coloring a graph to k-term- DNF. Here: k=3

Assumption: if P=NP, trivial to learn (take random examples

[PittValiant]: NP # RP =>
Proper Learning Impossibility

 3-term DNP: All TvT,vT;where each T;is conjunction of
subsets of literals of x;...x,

» 3-coloring graph
- Input: 6=(V,E)
- Output: 1iff there exists col: V ->{0,1,2} s.t. if (uv) €E
then col(v)+#col(u)

Reduction: We reduce graphs G to an instance of

learning 3-term DNF f. Namely, a polynomial set of
pqsiﬂye qnd [\egafiye eggmp_la_of a f_o["mula qnd)

[PittValiant]: NP # RP =>
Proper Learning Impossibility

* To: learn 3-term DNP
* From deciding: 3-coloring graph

Reduction: We reduce graphs G to set of examples S to
emulate an oracle over uniform distribution in S

s.t. G is 3-colorable if S is consistent with some k-term

Set £ =1/2|S|. If there exists 3-term DNF consistent with S,
learning algo will find h which is consistent with S
(otherwise errs with 2¢)., If there is no 3-term DNF
consistent with a 3-term DNF, algorithm will not find it..

[PittValiant]: NP # RP =>
3-term-DNF hard to properly learn

Given graph 6=(V,E): construct set S of examples over n vars

- Positive: For every vertex i in V={1..n}, add example

(v(i),1) where v(i)=(1..101..1 with O only in the ith position. Namely,
x;=1 except for j=i where xi=0 makes the DNF true.

- Negative: For ever edge (i,j) , add example

(e(i,j).0) where e(i,j)=(11101110111) with O in i and j- positions.

Namely, when x =1 except that x=xj=1 makes the DNF false.

Claim: G is 3-colorable implies S is consistent with 3-term DNF

Pf: Fix legal coloring, let R={ red vertices i}, B={blue vertices},
B={black vertices}. Fix T, (T, Ty)=conjunction of variables
whose are not colored R (B and C analogously). Then for each
vertex i, colored R, v(i) satisfies T, since it only gave O to
variable x. which does not appear in T, Similarly for B and B

Fur'Ther'mor'e edge e(i,j) will not satisfy T (or T, Ty) since both I
and J cannot be colored red , one of Them mus’r appear in T,
and since its O it will make T false. T

[PittValiant]: NP = RP =>
3-term-DNF hard to properly learn

Claim 2: Suppose formula T ,vT VT, is consistent
with S. Then G is 3-colorable

Pf: set the coloring as follows: set the color of
vertex i is R if v(i) satisfies T, (analogously T, & T,)
-Since the formula is consistent with S, every v(i)
satisfies some T, and each vertex has a color.

-Furthermore, coloring is legal since if iand j are
assighed same color then both v(i) and v(j) satisfy
same T_but i-th bit of v(i) is O and i-th bit of v(j) is
1 so they cant both appear in same T _

Also, v(i) and e(i,j) only differ in the j-th bit, so if
v(i) satisfies T_ so does e(i,j) and (i,j) is not an
edge.

[PittValiant]: Its all about
representation

Claim 2: k-term DNF is learnable by k-CNF

Claim [Valiant]:k-CNF is properly learnable by
k-CNF.

Corollary: k-term DNF can be learnable by a
k-CNF.

[PittValiant]: More
impossibilities
Claim 2: K-Boolean-threshold not

PAC-learnable

*K-Boolean threshold:

- Fixy in {O,1}".

- Then all x s.t. inner product xy>k mod 2
‘Reduction from 0/1 integer programming
which is NP-complete

[GoGoMi] How about Hardness which
is Representation Free?

» Construct a concept class C

* Show that its hard to learn independently
of H, i.e for any H which is polynomial
time circuit family

One-Way Functions exist

One-way Functions (Informally)

F

Easyto
compute
>

Hard to
invert

domain
range

Def: One-way Functions

A function (family) {F,}nen where E,: {0,1}"-> {0,1}™(™)
is one-way if for every p.p.t. adversary A, there is a
negligible function u s.t.

PrlA(1",y) =x's.t.y = Fp(x")] < u(n)
probability taken over x « {0,1}";y = E,(x);

 Can always find an inverse with unbounded
time
but should be hard with probabilistic polynomial time

Special cases: One-way Permutations:

One-way Functions: Candidates

G(aq, o) Apy X1, ooy Xp) = (Aq, vy Apy oreq X;a; MOd 271

-— ——— T M W P § T W T Faf W W Paf S am eme r— Tt Pk e e e e e

G(p,q)=pq. Factoring problem

One-way functions candidates are abundant
in nature,
Can construct a universal one-way function.

Gl intuitively hard to “learn”
To put in our framework, One Way Boolean

THaanAta A~ ~D

Hardcore Bits

If F is a one-way function, we know it's hard to
compute a pre-image of F(x) for a randomly chosen x.

But... you may be able o compute some bit of x

Exercise: There are one-way functions for which it is
easy to compute the first half of the bits of the
inverse.

Nevertheless, there has to be a hardcore set of hard
to invert inputs. Thus: Does there necessarily exist
some bit of x that is hard to compute?

Hardcore Bits

If F is a one-way function, we know it's hard to
compute a pre-image of F(x) for a randomly chosen x.

But... you may be able to compute some bit of x

Exercise: There are one-way functions for which it is
easy to compute the first half of the bits of the
inverse.

Does there exist some bit of x_that is hard to guess
with probability non-negligibly better than 1/2?

« Any bit can be guessed correctly w.p. 1/2

From Hardcore Bits to Hardcore
Predicates

For any function (family) F: {0,1}"- {0,1}™, a function
B:{0,1}"— {0,1} is a hardcore predicate if for every
p.p.t. adversary A, there is a negligible function pu s.t.

1
Pr[A(y) = B(x)] < 5+ un)

Prob taken over x « {0,1}"; y = F(x).
S a?ﬂ&% @ F(x)
00{99
Hard to
X compute
m‘ v
corY to B(x
Olbp Uta ()

Every OWF Has an Associated Hard Core
Predicate |GL]

Let F be a one-way function.
Let {B,:{0,1}"— {0,1}} where
B,.(x) = (r,x) =)i, rix; mod 2
be a collection of predicates (one for each r).

Then, a random B, is hardcore predicate for F.
For every PPT A, there is a negligible function u s.t.

PrACF(x),7) = B, ()] < 5+ u(n)
Prob taken over x « {0,1}";r « {0,1}"

Interpretation : For every one-way function F, there is a
related one-way function F'(x,r) = (F(x),r) which has a
deterministic hardcore predicate B(x,r)= I, r;x; mod 2.

A concept which is
Representation-Free Hard to Learn

* Let F be a family of one-way functions

- Let B be the associated hard-core Boolean
predicate for F

» Concept C ={(f(x), B(x): finF }
- Easy to compute if you know x
- Hard to learn if you don't know x

- Reduction: if can (weakly) learn B can invert f,
contradiction!

- Note: can even generate samples. Take z in
domain of f, then {f(z), B(z)} is in C.

What about membership queries?

~ Q: Are there concepts C which are hard to
learn even if you can ask for (x,g(x)) for x
of your choice?

- A:yes

* Theorem [GoGoMi]
One-Way Functions =
Pseudo Random Functions =

— PO PO | ,' - - ”~ l.l

Boolean Pseudo Random
Functions(PSRF) [GGM86]

F_ = Collection of indexed functions
f.:{0,1}" =0,1} is pseudo-random if
— [Poly Time Evaluation given s] Given s, can
compute f, (x) is efficiently computable
— [Impossible to guess without s]
No adversary can distinguish between
(x, fs (x)) for x of its choice, and
(x, U) (truly random function values).

Boolean Pseudo Random
Functions(PSRF)

F, = collections of indexed Boolean functions
f.:{0,1}"= {0,1} is pseudo-random if
— [[Poly Time Evaluation given s] Given s, f (X) is
efficiently computable

— [Impossible to guess without s]
For all PPT query-algorithms DF, for all sufficiently large n

lprob(D(1") =1: fis a random Boolean function on {0,1}") -
prob(D(1") =1): f €F,)=negl(n)

NOTE: Df makes polynomial queries to f

Pseudo-Random F is
iIndistinguishable from Random

Phase 1 Phase 1
X f(x) X f(X)
D D

Prob (D' says 1in Phase 2) = Prob (D says 1 in phase 2)

!

Existence of PSRF’s

Theorem: If one-way functions exist, then
collections of pseudo random functions exist

Proof: Start with length doubling strong pseudo
random generator (PRG) 6:{0,1}" ->{0,1}4"

A function G: {0,1}"- {0,1}*™ is a strong pseudorandom
generator if no p.p.t. can distinguish between G (U,,) and U;,) .

U,,= uniform distribution on n bits.
Utx)= uniform distribution on t(n) bits.

EX: G(x) = f(x)|B(x) for hard core predicate B, and t(n)=n+1

Next. ESRF tree Like Construction

G,(s) = Run PRG G:{0,1}" ->{0,1}*" on
seed s and output the first n output bits

6,(S)0 6y(s G,(s) = Run aPSRG G:{0,1}" ->{0,1}*"
seed s and output the 2nd n output bits
/ \> GOO(S) = Go(Go(S))
64(64(5)) G,,(s) =G,(G,(s)) ..

/\ GX(S) = Gxnxn-1 x1(S) =(‘:"xn((‘?"xn-1 ("'Gx1(s)'
000

Each leaf corresponds to path x €{0,1}".
6,(6,(64(s)))

f_(x) =G, (s) =LSB(label of leaf x) e.g. f(0000)= LSB(G(G,
(Gy(Gy((s)))))
Set PSRF family F={F } and Fn={fs}|3|:n

Theorem: If G is strong PRG, then F is psrf

Hybrid Argument

—

p, = prob (geD;: DI (1") =1
Y

Theorem: If G is cs-prg, then F is psrf

Proof outline: By contradiction. Assume, algorithm D' exists
which “distinguishes” F_ from H_with probability € after poly many
queries to f (f is either from F_or all from H), then can construct
algorithm A to “distinguish™ outputs of G(U) from U, with
probability £'= £/n
Hybrid argument by levels of the tree
Di . functions defined by filling truly random labels in nodes at

level i and then filling lower levels with Pseudo-random values
from i+1 down to n

Let p, =prob (f€D.: Df (1" =1).
Then p, = prob (f€F : Df (1") =1) and
p,= prob (fEH_: D'(1") =1)
and |p.-p,I>e =3 1<i<ns.t. [p.-p, . [Ze/n= €

Evaluating PSRF

* Given s, n sequential invocations of G

* Polynomial Time but a high polynomial, O(n)
evaluations of G (depth)*

O(n) evaluations of f (per node)

But does the job, its polynomial time!

Let F_be a collection of PSRF,

Unlearnable concept class by any polynomial time
algorithm={c_ jwhere

c.={(x,f,(x))} even if learning algorithm can query
for f(x) of x of its choice

From Learning to Cryptography:
Interesting Consequences

* PRFs cannot be implemented by linear
threshold functions as can be learned

* PRF cannot be implemented by polynomial
size formula in DNF form, as can be
learned for uniform distribution

- etfc

Kearns Valiant 87

* Very nice GGM, so there exists poly-time C
which cannot be PAC learned independent of
representation

* But maybe all € which can be evaluated by
simple computational models (within P), can be
PAC-learned

+ KV87: if Factoring is hard (or RSA is hard to
invert or discrete log is hard), then the
following cannot be PAC learned

- the class C, of polynomial size, log (n) depth, fanin-2
Boolean circuits

- Finite automata, Constant depth threshold

Klivans Shertov

- if approximating unique Shotest Vector
in Lattice (uSVP) is hard then
intersection of half spaces is not
PAC-learnable independent of
representation

o Zaixi >T

* Previously: only proper learning
impossibility

Review: Number Theory

Let's review some number theory .

Let N = pq be a product of two large primes.
Fact: Zy = {a € Zy:gcd(a,N) = 1} is a group.
 group operation is multiplication mod N.

* the order of the group is
dN)=@P—-D(@—-1)

The RSA Trapdoor Permutation

Let e be an integer with gcd(e, (N)) = 1.

RSA assumption: assume that the map
RSAy .(x) = x° mod N is a one-way permutation

(i.e hard to compute x from x¢ mod N)

Key Fact: given d such that ed = 1 mod $p(N), it is

easy to compute x given x¢ mod N
Proof: (x¢)% = xk¢W+1 — (x ¢k . » = xy mod N
Crypto-speak: d = e 'mod ¢(N) is a trapdoor for e

Key Theorem[ACGS86]. LSB(x) is a hardcore

predicate for RSA(x).
Can use an oracle to LSB(X) which guesses non-
negligebly better than random to invert RSA(x)

Kearns Valiant Concept Class

et members concept C,, be defined by
RSA triples {p,q, €} s.t. |p|=|q|=|e|=k, n= 10k?

Define bin-powers (z,N) =
<Z mod N, 72 mod N,___, z2ceiling(logN) mod N>

Labeled Examples for {p,q,e} in C,;:
{bin-powers(RSAy .(x)), N, e, LSB(x)))

Kearns Valiant Concept Class is

Hard to Learn

©laim: If C can be (even weakly) PAC-learned,
then can invert RSA.

Proof: Each time learner requests an example,
choose x s.t. LSB(x)=0/1 (pos/neg) and output
labeled (<bin-powers(RSAy ¢ (x),N,e >, LSB(x))

If Learner putputs h which learns LSB(x) non-neg
better then guessing at random on unlabeled
<bin-powers(RSAy ¢ (x)), N, e >, then RSA is easy
to break as follows;

Kearns Valiant: C is in NC1 circuit
@: Why the business with bin-powers (z,N) =
<zmod N, zZZmod N,..., z2(caN) mod N> ?

A: to enable labeling of examples by a low depth
NC1 circuit.

Claim: 3 an NC1 circuit to output the labels of
examples for concepts (p,q,e) in class C,

Proof: Recall d s.t. (x¢)? = x mod N, The NC1
circuit has wired in d =d,...d,, and on input

shin nAwnIArea/DCA (< Y\ N A ~

Augmented PRFs [2003 -

present]
Key homomorphic | Updatable encryption, LWE
Distributed PRFs
Related-key Tweakable block cipher, |DDH + CRH
Secure Simpler CBC-MAC
Constrained Applications of 10 OWF

Multilinear maps

Algebraic Oblivious PRF evaluation, | DDH
Verifiable computation

PRFs and Learning: Still hard to
Learn even when

Constrained — Can label some of the
examples of the
Aggregate concept yourself

Can get sums of labels
In an interval you
specify

Key homomorphic

Related-key secure

Labels satisfy arithmetic

Can receive answers to
Queries on related
concepts

Constrained PRFs [2013]

s R

>

A <fic\s ()

frls = Constrain(fi, S)

