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PAC- Terminology

• Alg is given sample S = {(x,y)} drawn from 
distribution P over instance space X, labeled by 
some Boolean target function f in concept class 
C, i.e  y=f(x)

• [say x is positive example or x in f: f(x)=1]
 
• Goal: Algo produces hypothesis h in class H which 

is  ε-close to f over distribution P.



Concepts vs. Representation
• C specifies both a concept and 

representation with an associated size
• Ex: C={<x1…xn , f(x1…xn)=xor (a1x1…anxn)>}

– with Representation: Boolean circuit (size n), or 
DNF (size is exponential in n)

• Ex: convex polytope
– Representation: list of vertices or linear 

equations to define the faces of the polytope.



PAC learning; focus on 
complexity today

Let X = {Xn} = {0,1}n  (or n-dim Euclidean space)
Let C={Cn } where Cn is a representation class over Xn

Algo A PAC-learns concept class C by hypothesis 
class H if for any unknown target f in C any 
distribution P over X, any ε, δ > 0, 

– A uses at most poly(n,1/ε,1/δ, size(f)) examples and 
running time to produce h.

–  with probability 1-δ
     h in H & h agrees with f with error at most ε.
    (allows failure w.prob δ: S may be non-representative) 

 



Algorithmic/model issues

•  
PAC model talks of learning C by H.



Representation independence = 
H is Efficient to evaluate

•  



 
•  



 

•  



 
• To: learn 3-term DNP
• From deciding: 3-coloring graph

Reduction: We reduce graphs G to set of examples S to 
emulate an oracle over uniform distribution in S

s.t. G is 3-colorable if S is consistent with some k-term 

Set ε =1/2|S|. If there exists 3-term DNF consistent with S, 
learning algo will  find h which is consistent with S 
(otherwise errs with 2ε)., If there is no 3-term DNF 
consistent with a 3-term DNF, algorithm will not find it..



 
Given graph G=(V,E): construct set S of examples over n vars

– Positive: For every vertex i in V={1…n}, add example
(v(i),1) where v(i)=(1..101..1 ,with 0 only in the ith position. Namely, 

xj=1 except for j=i where xi=0 makes the DNF true.
– Negative: For ever edge (i,j) , add example
(e(i,j),0) where e(i,j)=(11101110111) with 0 in i and j- positions.
Namely,  when xk=1 except that xi=xj=1 makes the DNF false.
Claim: G is 3-colorable implies S is consistent with 3-term DNF
Pf: Fix legal coloring, let R={ red vertices i}, B={blue vertices}, 

B={black vertices}. Fix TR (TB, TB)=conjunction of variables 
whose are not colored R (B and C analogously). Then for each 
vertex  i, colored R, v(i) satisfies TR since it only gave 0 to 
variable  xi which does not appear in  TR. Similarly for B and B

Furthermore, edge e(i,j) will not satisfy TR (or TR, TB) since both I 
and J cannot be colored red , one of them must appear in TR 
and since its 0 it will make TR false. T



 
Claim 2: Suppose formula TRvTBVTB is consistent 
with S. Then G is 3-colorable
Pf: set the coloring as follows:  set the color of 
vertex i is R if v(i) satisfies TR (analogously TB & TB)
-Since the formula is consistent with S, every v(i) 
satisfies some TC , and each vertex has a color. 
-Furthermore, coloring is legal since if i and  j are 
assigned same color then both v(i) and v(j) satisfy 
same Tc but i-th bit of v(i) is 0 and i-th bit of v(j) is 
1 so they cant both appear in same Tc. 
Also, v(i) and e(i,j) only differ in the j-th bit, so if 
v(i) satisfies Tc  so does e(i,j) and (i,j) is not an 
edge.



[PittValiant]: Its all about 
representation 

Claim 2: k-term DNF is learnable by k-CNF

Claim [Valiant]:k-CNF is properly learnable by 
k-CNF.

Corollary:  k-term DNF can be learnable by a 
k-CNF.



[PittValiant]: More 
impossibilities

Claim 2: K-Boolean-threshold not 
PAC-learnable 

•K-Boolean threshold: 
– Fix y in {0,1}n.
– Then all x s.t. inner product xy>k mod 2  

•Reduction from 0/1 integer programming 
which is NP-complete



[GoGoMi] How about Hardness which 
is Representation Free?

• Construct a concept class C
• Show that its hard to learn independently 

of H, i.e for any H which is polynomial 
time circuit family

• Assumption: One-Way Functions exist



One-way Functions (Informally)

F

domain
range

Easy to 
compute

Hard to 
invert



Def: One-way Functions

 

 

Special cases: One-way Permutations:

• Can always find an inverse with unbounded 
time

but should be hard with probabilistic polynomial time



One-way Functions: Candidates

 

 

One-way functions candidates are abundant 
in nature. 
Can construct a universal one-way function .

G-1: intuitively hard  to “learn”
To put in our framework, One Way Boolean 
Functions?

.



Hardcore Bits
 

But… you may be able to compute some bit of x

Exercise: There are one-way functions for which it is 
easy to compute the first half of the bits of the 
inverse.

 



Hardcore Bits
 

But… you may be able to compute some bit of x

Exercise: There are one-way functions for which it is 
easy to compute the first half of the bits of the 
inverse.

 

• Any bit can be guessed correctly w.p. 1/2 



From Hardcore Bits to Hardcore 
Predicates

 

 

x

Easy to 

compute

Easy to compute

F(x)

B(x)

Hard to 
compute



 

 
 

 

 

Every OWF Has an Associated Hard Core 
Predicate [GL]



A concept which is 
Representation-Free  Hard to Learn

• Let F be a family of one-way functions
• Let B be the associated hard-core Boolean 

predicate for F 

• Concept Cn={(f(x), B(x): f in Fn}
– Easy to compute if you know x
– Hard to learn if you don’t know x
– Reduction: if can (weakly) learn B can invert f, 

contradiction!
– Note: can even generate samples. Take z in 

domain of f, then {f(z), B(z)} is in C.



What about membership queries?

•  



Boolean Pseudo Random 
Functions(PSRF) [GGM86]

•  



Boolean Pseudo Random 
Functions(PSRF)

•  

NOTE: Df makes polynomial queries to f



f in Hn

D 

x f(x)

Phase 1 Phase 1

f in Fn

D

x f(x)

Prob (Df says 1 in Phase 2 )    ≈    Prob (D says 1 in phase 2)

Pseudo-Random F is 
indistinguishable from Random



Existence of PSRF’s
Theorem: If one-way functions exist, then 
collections of pseudo random functions exist

Proof:  Start with length doubling strong pseudo 
random generator (PRG) G:{0,1}n ->{0,1}2n 

 

 
 



Next. PSRF tree Like Construction

G0(S) G1(S)

S

G0(G0(S)) 

G1(G0(G0(s))) 

fs (x) = Gx(s) =LSB(label of leaf x)  e.g. fi(0000)= LSB(G0(G0 
(G0(G0((s)))))

Set PSRF family F= {Fn}  and Fn={fs}|s|=n

 

G0(s)  = Run  PRG G:{0,1}n ->{0,1}2n on 
seed s and output the first n output bits 

G1(s)  = Run a PSRG G:{0,1}n ->{0,1}2n on 
seed s and output the 2nd n output bits
G00(s)  = G0(G0(s)) 
G01(s)  = G1(G0(s)) …
Gx(s) = Gxnxn-1 x1(s) =Gxn(Gxn-1 (…Gx1(s)…))

Each leaf corresponds to path x∈{0,1}n.



 Hybrid Argument

S0
S1

S

G0(S0)

G1(G0(S0)) 

n-i

i

Di 

pi = prob (g∈Di: D
g (1n) =1 

|). 

Theorem: If G is strong PRG, then F is psrf



Theorem: If G is cs-prg, then F is psrf

Proof outline: By contradiction. Assume, algorithm Df exists 
which “distinguishes” Fn  from Hn with probability ε after poly many
queries to f  (f is either from Fn or all from Hn), then can construct 
algorithm A to “distinguish”  outputs of G(Un

 ) from U2n with 
probability  ε’= ε/n

Hybrid argument by levels of the tree
 Di : functions defined by filling truly random labels in nodes at 

level i  and then filling lower levels with Pseudo-random values 
from i+1 down to n
Let    pi = prob (f∈Di : D

f (1n) =1 ). 
Then p1 = prob (f∈Fn: D

f (1n) =1 ) and
         pn = prob (f∈Hn: D

f(1n) =1  )  
 and |pn-p1|>ε ⇒∃ 1<i<n s.t. ⏐pi - pi -1⏐≥ ε/n= ε’



Evaluating PSRF
• Given s, n sequential invocations of G
• Polynomial Time but a high polynomial, O(n) 

evaluations of G (depth)*
   O(n) evaluations of f (per node)

But does the job, its polynomial time!
Let Fn be a collection of PSRF, 
Unlearnable concept class by any polynomial time 

algorithm={cs  }where 
cs={(x,fs(x))} even if learning algorithm can query  

for f(x) of x of its choice
                     



From Learning to Cryptography: 
Interesting Consequences

• PRFs cannot be implemented by linear 
threshold functions as can be learned

• PRF cannot be implemented by polynomial 
size formula in DNF form, as can be 
learned for uniform distribution

• etc



Kearns Valiant 87
• Very nice GGM, so there exists poly-time C 

which cannot be PAC learned independent of 
representation

• But maybe all C which can be evaluated by 
simple computational models (within P), can be 
PAC-learned

• KV87: if Factoring is hard (or RSA is hard to 
invert or discrete log is hard), then the 
following cannot be PAC learned
– the class Cn of polynomial size, log (n) depth, fanin-2 

Boolean circuits
– Finite automata, Constant depth threshold



Klivans Shertov

• if approximating unique Shotest Vector 
in Lattice (uSVP)  is hard then 
intersection of half spaces is not 
PAC-learnable independent of 
representation

• Σaixi >t

• Previously: only proper learning 
impossibility



Review: Number Theory

Let’s review some number theory .

 

 

 

• the order of the group is
 



The RSA Trapdoor Permutation
 

 

 

Key Theorem[ACGS86]: LSB(x) is a hardcore 
predicate for RSA(x). 
Can use an oracle to LSB(X) which guesses non- 
negligebly better than random to invert RSA(x)



Kearns Valiant Concept Class

•  



Kearns Valiant Concept Class is 
Hard to Learn

•  



Kearns Valiant: C is in NC1 circuit
•  



Augmented PRFs [2003 - 
present]

Type Applications Assumptions

Key homomorphic Updatable encryption, 
Distributed PRFs

LWE

Related-key 
secure

Tweakable block cipher, 
Simpler CBC-MAC

DDH + CRH

Constrained Applications of IO OWF 
Multilinear maps

Algebraic Oblivious PRF evaluation, 
Verifiable computation

DDH



PRFs and Learning: Still hard to 
Learn even when

PRFs
Constrained

Aggregate

Key homomorphic

Related-key secure

Learning is HARD
Can label some of the 
examples of the 
concept yourself
Can get sums of labels 
in an interval you 
specify
Labels satisfy arithmetic

Can receive answers to 
Queries on related 
concepts



Constrained PRFs [2013]

retains pseudorandomness on 


