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Covering Numbers and Chaining

1 Definitions

I Definition 1. A pseudo-metric space is a tuple (Ω, ρ) where Ω is a set and ρ : Ω×Ω→ [0,∞)
is a function such that for every x, y, z ∈ Ω the following properties hold:

1. Identity: ρ(x, x) = 0.
2. Symmetry: ρ(x, y) = ρ(y, x).
3. Triangle inequality: ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

I Remark 2. Pseudo-metric spaces differ from metric spaces in that a metric space satisfies
the stronger identity of indiscernibles property, ρ(x, y) = 0 ⇐⇒ x = y. In other word, in
a pseudo-metric space it is possible that ρ(x, y) = 0 for x 6= y, but that is not possible in
metric space. Additionally, note that the definition does not change if we allow ρ : Ω× Ω→
R, because it is possible to deduce that ρ is non-negative from the other assumptions:
∀x, y ∈ Ω : 0 = ρ(x, x) ≤ ρ(x, y) + ρ(y, x) = 2ρ(x, y). y

(a) An ε-cover of the gray square. The
cover is not internal.

(b) The set of blue points forms an ε-
packing of the gray disk. The ε/2-balls
around them are non-intersecting.

Figure 1 Illustrations of covering and packing. Source: Michael Wolf [3].

I Definition 3. Let (Ω, ρ) be a pseudo-metric space, let X,C, P ⊆ Ω, and let ε > 0.
We say that C is an ε-cover of X if

∀x ∈ X ∃c ∈ C : ρ(x, c) ≤ ε.

We say that C is an internal ε-cover of X if C ⊆ X and C is an ε-cover of X.
The ε-cover number of X is

N(X, ε, ρ) = inf {|C| : C ⊆ Ω ∧ C is an ε-cover of X} .

The internal ε-cover number of X is

Nin(X, ε, ρ) = inf {|C| : C ⊆ X ∧ C is an ε-cover of X} ,
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2 Covering Numbers and Chaining

We say that P is an ε-packing of X if P ⊆ X

∀x, y ∈ P : ρ(x, y) > ε.

The ε-packing number of X is

M(X, ε, ρ) = sup {|P | : P ⊆ X ∧ P is an ε-packing of X} .

When ρ is understood from context we will simply write N(X, ε), Nin(X, ε), and M(X, ε).

All these numbers are closely related.

B Claim 4. Let (Ω, ρ) be a pseudo-metric space, let X ⊆ Ω, and let ε > 0. Then

N(X, ε) ≤ Nin(X, ε) ≤M(X, ε) ≤ N(X, ε/2).

I Definition 5. Let (Ω, ρ) be a pseudo-metric space, let x ∈ Ω and ε ≥ 0. The ε-ball centered
at x is Bε(x) = {y ∈ Ω : ρ(x, y) ≤ ε}.

Proof of Claim 4. We prove this claim for the case where all the numbers are finite. The
first inequality is immediate from the definitions.

For the second inequality, let P ⊆ X be an ε-packing of X such that |P | = M(X, ε).
Then P is maximal in the sense that for any point x ∈ X \ P , the set P ∪ {x} is not an
ε-packing of X. Namely, for any x ∈ X there exists p ∈ P such that ρ(x, p) ≤ ε. Hence, P is
an internal ε-cover of X, and so Nin(X, ε) ≤ |P |.

For the last inequality, let C be an ε/2-cover of X such that |C| = N(X, ε/2). Let P be
any ε-packing of X. We constructs an injective function f : P → C, and this completes the
proof because it implies that |P | ≤ |C|. For each p ∈ P , we define f(p) to be an arbitrary
c ∈ C such that p ∈ Bε/2(c) (such a c always exists because C is an ε/2-cover). To see
that f is injective, assume for contradiction that there exist p1, p2 ∈ P such that p1 6= p2
and f(p1) = f(p2) = c. Then ρ(p1, p2) ≤ ρ(p1, c) + ρ(c, p2) ≤ ε/2 + ε/2 = ε, which is a
contradiction to P being an ε-packing. J

2 Intuition for Covering and Packing Numbers

I Example 6. Consider the metric space (Rd, ρ) where ρ(x, y) = ‖x− y‖ and ‖ · ‖ is some
`p norm. For any ball Br(x) ⊆ Rd of radius r centered at x ∈ Rd, the volume (Lebesgue
measure) of Br(x) is given by the formula V (Br(x)) = Cd,p · rd, where Cd,p ∈ R is some
constant that depends on p and d. For example, if d = p = 2 then Cd,p = π, yielding the
familiar formula πr2 for the area of a circle in the Euclidean plane.

In this metric space we can obtain the following bounds for the the packing and covering
numbers of a ball Br(x):

If ε ≤ r then M(Br(x), ε) ≤
( 3r
ε

)d. To see this, let P ⊆ Br(x) be an ε-packing of
Br(x). Then for every p1, p2 ∈ P , the balls Bε/2(p1) and Bε/2(p2) are disjoint, and
contained in Br+ε/2(x). Hence

V
(
Br+ε/2(x)

)
≥
∑
p∈P

V (Bε/2(p)) = |P | · V (Bε/2(0)),

so

|P | ≤
V
(
Br+ε/2(x)

)
V (Bε/2(0)) = Cd,p(r + ε/2)d

Cd,p(ε/2)d ≤
(
r + r/2
ε/2

)d
=
(

3r
ε

)d
.
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N(Br(x), ε) ≥
(
r
ε

)d. Indeed, if C ⊆ Ω is an ε-cover of Br(x), then

V (Br(x)) ≤
∑
c∈C

V (B(c, ε)) = |C| · V (B(0, ε)),

and this implies that

|C| ≥ V (Br(x))
V (B(0, ε)) = Cd,pr

d

Cd,pεd
=
(r
ε

)d
.

Thus, for ε ≤ r we have that
(
r
ε

)d ≤ N(Br(x), ε) ≤M(Br(x), ε) ≤
( 3r
ε

)d.
The above example demonstrates a fairly general phenomena. For sets in Rd bounded by

a constant, the log of the packing and covering numbers, lnM(A, ε) and lnN(A, ε), tend to
scale like d ln

( 1
ε

)
.1 Perhaps surprisingly, a similar phenomena also holds for metric spaces of

functions, if we replace the algebraic dimension with the VC dimension, as we will see in the
next section.

3 Packing Numbers for VC Classes

I Definition 7. Let V be a vector space over R. A seminorm is a function p : V → R
satisfying

Triangle inequality. ∀u, v ∈ V : p(u+ v) ≤ p(u) + p(v).
Absolute homogeneity. ∀v ∈ V ∀c ∈ R : p(cv) = |c|p(v).

I Remark 8. The definition of seminorm also implies non-negativity, namely p(v) ≥ 0 ∀v ∈ V .
To see this, note that 0 = |0|p(u) = p(0u) = p(0) = p(v − v) ≤ p(v) + p(−v) = 2p(v). A
norm is a semi-norm where p(v) = 0 =⇒ v = 0. y

I Definition 9. Let Ω be a set, let F be a class of functions Ω→ R, let S = (z1, . . . , zm) ∈ Ωm
and let p > 0. The empirical p-semi-norm of F with respect to S is a function ‖ · ‖S,p : F → R
such that

‖f‖S,p = ‖1/m · f(S)‖p =
(

1
m

m∑
i=1
|f(zi)|p

)1/p

.

Additionally, for p =∞ we define ‖f‖S,∞ = ‖f(S)‖∞ = maxi∈[m] |f(zi)|.

I Notation 10. Let Ω be a set, let F be a class of functions Ω→ R, S ∈ Ωm, and p ∈ (0,∞].
We write ρS,p : F2 → R to denote ρS,p(f1, f2) = ‖f1 − f2‖S,p.

I Lemma 11. Let Ω be a set, let F be a class of functions Ω→ {0, 1} with VC(F) = d <∞.
Let S ∈ Ωm and p ∈ (0,∞]. Then (F , ρS,p) is a pseudo-metric space, and for all ε > 0,

M(F , ε) ≤
(

4e
εp

ln
(

2e
εp

))d
.

1 One can in fact use this idea to define a notion of dimension in metric spaces that do not have an
algebraic notion of dimension. This is called the Minkowski–Bouligand dimension and it is used, for
example, to define the dimension of fractals.
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4 Covering Numbers and Chaining

Proof. To prove the lemma it suffices to show that

M(F , ε, ρS,1) ≤
(

4e
ε

ln
(

2e
ε

))d
. (1)

To see that this suffices, note that because the functions f ∈ F are binary,

‖f‖pS,p = 1
m

m∑
i=1
|f(zi)|p = 1

m

m∑
i=1
|f(zi)| = ‖f‖S,1,

so ‖f‖S,p = ε ⇐⇒ ‖f‖S,1 = εp. That is, a subset P ⊆ F is an ε-packing of F in (F , ρS,p)
if and only if it is an εp-packing of F in (F , ρS,1). Together with (1) this implies that

M(F , ε, ρS,p) = M(F , εp, ρS,1) ≤
(

4e
εp

ln
(

2e
εp

))d
.

We now prove (1). First, note that M(F , ε, ρS,1) ≤
∣∣F|S∣∣. To see this, assume for

contradiction that there exists a suitable ε-packing P such that |P | >
∣∣F|S∣∣. By the

pigeonhole principle, this implies that there exist two functions f, f ′ ∈ P such that f 6= f ′

and f |S = f ′|S . This implies that ρS,1(f, f ′) = 0 which is a contradiction to P being an
ε-packing. As a consequence, M(F , ε, ρS,1) is finite and so there exists a finite set P ⊆ F
such that P is an ε-packing of F with respect to ρS,1 and |P | = M = M(F , ε, ρS,1).

Second, note that for any f, f ′ ∈ P ,

ε < ρS,1(f, f ′) = 1
m

m∑
i=1
|f(zi)− f ′(zi)| =

1
m

m∑
i=1

1
(
f(zi) 6= f ′(zi)

)
= Pi∈[m] [f(zi) 6= f ′(zi)] . (2)

Third, let S̃ = (z̃1, . . . , z̃m) ∈ Ωm be a vector of elements chosen independently and
uniformly from S, namely S̃ ∼ (U(S))m, where U(S) is the uniform distribution on the
elements in S. Then for any f, f ′ ∈ P ,

PS̃ [f |S̃ = f ′|S̃ ] = PS̃

[
m⋂
i=1
{f(z̃i) = f ′(z̃i)}

]
=

m∏
i=1

PS̃ [f(z̃i) = f ′(z̃i)]

=
m∏
i=1

Pi∈[m] [f(zi) = f ′(zi)] =
m∏
i=1

(
1− Pi∈[m] [f(zi) 6= f ′(zi)]

)
<

m∏
i=1

(1− ε) ≤ e−εm. (from (2))

Fourth, fix m ≥ 2
ε ln(M). Applying a union bound to the last inequality yields

PS̃ [∃f, f ′ ∈ P : f |S̃ = f ′|S̃ ] ≤
(
M

2

)
e−εm < M2e−εm ≤ 1.

Namely,

PS̃ [∀f, f ′ ∈ P : f |S̃ 6= f ′|S̃ ] > 0,

and in particular there exists an assignment to S̃ such that f |S̃ 6= f ′|S̃ for all f, f ′ ∈ P . This
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implies that

M ≤
∣∣F|S̃∣∣

≤ τF (m) (definition of τF )

≤ (em/d)d (Sauer’s lemma)

≤
(

2e
εd

ln(M)
)d

. (choice of m)

Equivalently, M 1/d ≤ 2e
ε ln

(
M

1/d
)
. Finally, invoking Claim 17 in Unit 5 with x = M

1/d and
y = 2e

ε , we obtain

M
1/d ≤ 4e

ε
ln
(

2e
ε

)
,

and this completes the proof. J

4 Uniform Convergence via Covering Numbers

In Unit 5 Theorem 9 we saw that

P [∃h ∈ H : |LS(h)− LD(h)| > ε] ≤ 4τH(2m) exp
(
−ε

2m

8

)
. (3)

Hence, if τH grows sub-exponentially, then the class will satisfy uniform convergence and
therefore the ERM algorithm learns successfully. Observe that we can think of τH as a
covering number. Specifically, assume the set of labels is Y ⊆ R, |Y| <∞, and fix ε > 0 such
that ∀y, y′ ∈ Y, if y 6= y′ then |y − y′| > ε. Let X = {x1, . . . , xm} ⊆ X . Then∣∣∣H|X ∣∣∣ =

∣∣∣ {h|X : h ∈ H}
∣∣∣

= max {|H| : H ⊆ H ∧ ∀h, h′ ∈ H, h 6= h′ ⇒ h|X 6= h′|X}
= max {|H| : H ⊆ H ∧ ∀h, h′ ∈ H, h 6= h′ ⇒ ρX′,∞(h, h′) > ε}
= Nin (H, ε, ρX′,∞) ,

where X ′ = (x1, . . . , xm). Hence,

τH(m) = max X⊆X
|X|=m

∣∣∣H|X ∣∣∣ = maxX∈Xm Nin (H, ε, ρX,∞) .

This motivates the following definition.

I Definition 12. Let Ω be a set, F be a set of functions Ω→ R, p ∈ (0,∞], and ε > 0. The
uniform ε-covering number for F with respect to the empirical p-semi-norm is

Nuniform
p (F , ε,m) = max {Nin(F , ε, ρS,p) : S ∈ Ωm}

The following theorem shows that we can generalize the result of Eq. (3) to other covering
numbers beyond τH.

UC Berke ley



6 Covering Numbers and Chaining

I Theorem 13. Let X and Y be sets, let H be a class of functions X → Y, let ` : Y2 → [0, c]
be a loss function bounded by some positive c ∈ R, and let L be the loss class of H with
respect to `. Then for any ε > 0, any m ∈ N, and any distribution D over X × Y,

PS∼Dm [∃h ∈ H : |LS(h)− LD(h)| > ε] ≤ 4Nuniform
1 (L, ε/8, 2m) exp

(
− ε

2m

32c2

)
.

Proof. We modify the proof of Theorem 9 in Unit 5. Recall that in that proof, we considered
two independent samples S = (z1, . . . , zm), and S′ ∼ Dm, S′ = (z′1, . . . , z′m), and showed
that2

PS∼Dm [∃h ∈ H : |LS(h)− LD(h)| > ε] ≤

2PS∼Dm,S′∼Dm

∃h ∈ H :

∣∣∣∣∣∣ 1
m

∑
i∈[m]

`h(zi)− `h(z′i)

∣∣∣∣∣∣ ≥ ε

2

 , (4)

where for any z = (x, y) ∈ X × Y, the function `h(z) = `(h(x), y) is the loss function in L
associated with h. Let C be an internal ε8 -cover of L with respect to ρS◦S′,1 such that

|C| = Nuniform
1 (L, ε/8, 2m) .

(A suitable cover C with this cardinality exists by the definition of Nuniform
1 .) The idea of

the next step is to replace each `h with an approximation `′h ∈ C, that is, to quantize or
approximate the functions in L using the coarser set of functions C. Specifically, for any
h ∈ H, let `′h ∈ C be a function such that ρS◦S′,1(`h, `′h) ≤ ε/8. Then the expression in
Eq. (4) can be rewritten as follows.

ε

2 ≤

∣∣∣∣∣∣ 1
m

∑
i∈[m]

`h(zi)− `h(z′i)

∣∣∣∣∣∣ (5)

=

∣∣∣∣∣∣ 1
m

∑
i∈[m]

`h(zi)− `′h(zi) + `′h(zi)︸ ︷︷ ︸
=0

− `′h(z′i) + `′h(z′i)︸ ︷︷ ︸
=0

−`h(z′i)

∣∣∣∣∣∣
≤ 1
m

∑
i∈[m]

|`h(zi)− `′h(zi)|+

∣∣∣∣∣∣ 1
m

∑
i∈[m]

`′h(zi)− `′h(z′i)

∣∣∣∣∣∣+ 1
m

∑
i∈[m]

|`′h(z′i)− `h(z′i)|

≤ ε

8 +

∣∣∣∣∣∣ 1
m

∑
i∈[m]

`′h(zi)− `′h(z′i)

∣∣∣∣∣∣+ ε

8 ,

and so Eq. (5) implies
∣∣∣ 1
m

∑
i∈[m] `

′
h(zi)− `′h(z′i)

∣∣∣ ≥ ε/4. Thus,

2 In the proof of Theorem 9 in Unit 5, this follows from Claim I together with the beginning of the proof
of Claim II.
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PS∼Dm,S′∼Dm [∃h ∈ H : |LS(h)− LD(h)| > ε/2]

≤ 2PS,S′

∃h ∈ H :

∣∣∣∣∣∣ 1
m

∑
i∈[m]

`h(zi)− `h(z′i)

∣∣∣∣∣∣ ≥ ε

2


= 2PS,S′

∃h ∈ H :

∣∣∣∣∣∣ 1
m

∑
i∈[m]

`′h(zi)− `′h(z′i)

∣∣∣∣∣∣ ≥ ε/4


= 2ES,S′Pσ∼{±1}m

∃h ∈ H :

∣∣∣∣∣∣ 1
m

∑
i∈[m]

σi(`′h(zi)− `′h(z′i))

∣∣∣∣∣∣ ≥ ε/4

 . (6)

In the last equality we applied the symmetrization technique which we have seen in previous
lectures, using the fact that

(
`′h(zi)− `′h(z′i)

)
i∈[m]

d=
(
σi(`′h(zi)− `′h(z′i))

)
i∈[m]

.

Next, for each S, S′,

Pσ∼{±1}m

 ⋃
h∈H


∣∣∣∣∣∣ 1
m

∑
i∈[m]

σi(`′h(zi)− `′h(z′i))

∣∣∣∣∣∣ ≥ ε/4




= Pσ

 ⋃
`′∈C


∣∣∣∣∣∣ 1
m

∑
i∈[m]

σi(`′(zi)− `′(z′i))

∣∣∣∣∣∣ ≥ ε/4


 (C = {`′h : h ∈ H})

≤
∑
`′∈C

Pσ

∣∣∣∣∣∣ 1
m

∑
i∈[m]

σi(`′(zi)− `′(z′i))

∣∣∣∣∣∣ ≥ ε/4

 (union bound)

=
∑
`′∈C

Pσ

∣∣∣∣∣∣ 1
m

∑
i∈[m]

Zi

∣∣∣∣∣∣ ≥ ε/4

 (let Zi = σi
(
`′(zi)− `′(z′i)

)
)

≤
∑
`′∈C

2 exp
(
−2 (ε/4)2

m

(2c)2

)
(Hoeffding’s: Zi are i.i.d.,

E [Zi] = 0, Zi ∈ [−c, c])

= 2|C| exp
(
− ε

2m

32c2

)
≤ 2 ·Nuniform

1 (L, ε/8, 2m) · exp
(
− ε

2m

32c2

)
. (choice of C) (7)

Combining Eq. (4), (6) and (7) yields the theorem. J

5 Chaining

Chaining is a technique for bounding the Rademacher average. Roughly speaking, we can
think of it as a sophisticated union bound. In this section we loosely follow Nelson [2] and
present a sequence of steps that gradually build up to the full technique.

Let A ⊆ Rm be a finite set such that ‖a‖2 ≤ r for all a ∈ A. We are interested in upper
bounding the Rademacher average

Rad(A) = Eσ∈{±1}m

[
sup
a∈A

1
m

m∑
i=1

σiai

]
.

UC Berke ley



8 Covering Numbers and Chaining

Method 0: Union Bound
For any t > 0,

Pσ∼{±1}m

sup
a∈A

1
m

∑
i∈[m]

aiσi > t

 ≤ |A| sup
a∈A

Pσ∼{±1}m

 1
m

∑
i∈[m]

aiσi > t

 (union bound)

≤ 2|A| exp
(
−mt

2

2r2

)
. (Hoeffding’s inequality)

Hence,

Rad(A) = E
σ∈{±1}m

[Z] (Z = sup
a∈A

1
m

m∑
i=1

σiai)

= P [Z ≤ t]E [Z | Z ≤ t] + P [Z > t]E [Z | Z > t] (law of total expectation)

≤ t+ P [Z > t] r√
m

(Z ≤ sup
a,σ

〈σ, a〉
m
≤ sup

a,σ

‖a‖‖σ‖
m

≤ r√
m

a.s.)

≤ t+ 2r√
m
|A| exp

(
−mt

2

2r2

)
. (from the previous inequality)

Choosing t = 2r√
m
, we obtain

Rad(A) ≤ 2r√
m

+ 2r√
m
|A| exp(−2) = O

(
|A| · r√

m

)
.

This bound is very weak, but it was also very simple to prove – the tools we used were the
union bound and Hoeffding’s inequality.

Method 1: Massart’s Lemma
In Unit 6 we proved Massart’s lemma, which states that

Rad(A) ≤
r
√

2 ln (|A|)
m

.

This is considerably stronger than the bound from Method 0 above. The proof we presented
for Massart’s lemma used the Maximal Inequality lemma, which was based on the Chernoff
method for proving concentration bounds. However, in the homework we will see that
Massart’s lemma can also be proved in a manner very similar to Method 0 above. From that
point of view, Massart’s lemma is basically a clever application of the union bound with
Hoeffding’s inequality.

Method 2: ε-Cover
If |A| = ∞ (or A is a finite but very large set) then the bound from Massart’s lemma is
not useful. We can overcome this problem by approximating the large set |A| with a much
smaller set C, which is an ε-cover for A. On the one hand, C is small and so Massart’s lemma
gives a good bound on Rad(C), and on the other hand C is a “good enough” approximation
of A, such that a good bound for Rad(C) implies a good bound for Rad(A).

More fully, let C ⊆ A be an internal ε-cover of A such that |C| = Nin(A, ε, ρ), where
ρ(x, y) = ‖x− y‖2. For each a ∈ A, let π(a) = c for c ∈ C such that ρ(a, c) ≤ ε. By linearity
of the inner product, for any a ∈ A and σ ∈ {±1}m,

〈σ, a〉 = 〈σ, π(a)〉+ 〈σ, a− π(a)〉 ≤ 〈σ, π(a)〉+ ‖σ‖2‖a− π(a)‖2 ≤ 〈σ, π(a)〉+ ε
√
m. (8)
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Therefore,

Rad(A) = Eσ∈{±1}m

[
sup
a∈A

〈σ, a〉
m

]
≤ Eσ∈{±1}m

[
sup
a∈A

〈σ, π(a)〉+ ε
√
m

m

]
(by Eq. (8))

= ε√
m

+ Eσ∈{±1}m

[
sup
a∈A

〈σ, π(a)〉
m

]
= ε√

m
+ Rad(C)

≤ ε√
m

+
r
√

2 ln (|C|)
m

. (Massart’s lemma)

= ε√
m

+
r
√

2 ln (Nin(A, ε, ρ))
m

. (9)

If ε = 0 this bound is the same as in Method 1. However, if we choose a value ε > 0 that
minimizes Eq. (9), we can get a better bound.

Method 3: Chaining
Instead of committing to a particular ε-cover, chaining is a technique that uses a countable
number of ε-covers with ε→ 0. We can think of this as a recursive application of Method
2, where we first approximate A by a coarse ε-cover, and then repeatedly improve the
approximation with finer and finer covers. Formally, the result is as follows.

I Theorem 14 (Dudley [1]). Let r > 0 and let A ⊆ Rm be a set such that ‖a‖2 ≤ r for all
a ∈ A. Then

Rad(A) ≤ 12
m

∫ r

0

√
ln (N(A, ε, ρ)) dε.

Furthermore, if r ≥ 1 then

Rad(A) ≤ 12r
m

∫ 1

0

√
ln (N(A, ε, ρ)) dε.

I Remark 15.
In particular, r ≥ 1 if A is a set of boolean vectors, for instance if A is the 0-1 loss
class for some class of hypotheses, .
A small modification of the proof yields a bound of the form

Rad(A) ≤ inf
α∈[0,r/2]

4α+ 12
m

∫ r

α

√
ln (N(A, ε, ρ)) dε.

In some cases, this bound has the advantage that the integral
∫ r
α
converges even though∫ r

0 does not converge (e.g., if
√

lnN(A, ε, ρ) > 1
ε in some neighborhood of 0). See

Theorem 1.19 in [3]. y

Proof of Theorem 14. Let ρ(x, y) = ‖x − y‖2. For any k ∈ {0, 1, 2, . . . }, let Ck ⊆ Rm be
an εk-cover of A where εk = r

2k and |Ck| = N(A, εk, ρ). In particular, we can take C0 = {0},

UC Berke ley
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because ρ(a, 0) = ‖a‖2 ≤ r = ε0 for all a ∈ A. For any k and any a ∈ A, let πk(a) = c such
that c ∈ Ck and ρ(a, c) ≤ εk. Furthermore, let ∆k(a) = πk(a)− πk−1(a). For any a ∈ A,

a = π0(a) +
∞∑
k=1

∆k(a) =
∞∑
k=1

∆k(a).

Hence,

Rad(A) = E
σ∈{±1}m

[
sup
a∈A

〈a, σ〉
m

]
= Eσ

[
sup
a∈A

〈
∑∞
k=1 ∆k(a), σ〉

m

]
≤
∞∑
k=1

Eσ
[

sup
a∈A

〈∆k(a), σ〉
m

]
(linearity of inner product, sup Σ ≤ Σ sup)

=
∞∑
k=1

Rad(∆k), (10)

where ∆k = {∆k(a) : a ∈ A}. Notice that:

|∆k| = |{πk(a)− πk−1(a) : a ∈ A}|
≤ |{πk(a) : a ∈ A}| · |{πk−1(a) : a ∈ A}|
≤ N(A, εk, ρ) ·N(A, εk−1, ρ)
≤ N(A, εk, ρ)2,

and for all a ∈ A,

‖∆k(a)‖2 ≤ ‖πk(a)− a‖2 + ‖a− πk−1(a)‖2 ≤ 3εk.

Thus, by Massart’s lemma,

Rad(∆k) ≤
3εk
√

2 ln (N(A, εk, ρ)2)
m

=
6εk
√

ln (N(A, εk, ρ))
m

.

Plugging this into Eq. (10) yields

Rad(A) ≤
∞∑
k=1

6εk
√

ln (N(A, εk, ρ))
m

= 6
m

∞∑
k=1

εk
√

ln (N(A, εk, ρ))

= 12
m

∞∑
k=1

( r
2k −

r

2k+1

)√
ln (N(A, r/2k, ρ)) (11)

≤ 12
m

∫ r

0

√
ln (N(A, ε, ρ)) dε.

In the last inequality we used the fact the lower Riemann sum of the function f(ε) =√
ln (N(A, ε, ρ)) is upper bounded by the integral of f(ε), together with the fact that f(ε)

is monotone decreasing in [0, r] with f(r) = 0. This completes the proof of the first part of
the statement.

For the second part of the statement, notice that if r ≥ 1 thenN(A, r/2k, ρ) ≤ N(A, 1/2k, ρ),
and so Eq. (11) is upper-bounded by

12r
m

∫ 1

0

√
ln (N(A, ε, ρ)) dε. J
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6 Learning Bounds via Chaining

We now have all the ingredients to prove the tight sample complexity bound that appears in
the Fundamental theorem (Theorem 13 in Unit 5).

B Claim 16. Let X be a set, and let H be a class of functions X → {0, 1} with VC(H) = d.
Then H is agnostic PAC learnable with sample complexity

m = O

(
d+ ln(1/δ)

ε2

)
.

Proof. From Theorem 12 (iii) in Unit 6, the hypothesis h selected by an ERM algorithm
that uses a sample of size m satisfies

LD(h) ≤ LD(H) + 2RadDx,m(H) +
√

2 ln(2/δ)
m

. (12)

Let S be the sample and A = {h(S) : h ∈ H}. Then ‖a‖2 ≤
√
m for all a ∈ A. Let

ρ(x, y) = ‖x− y‖2. Dudley’s theorem implies

RadDx,m(H) ≤ 12√
m

∫ 1

0

√
ln (N(A, ε, ρ)) dε = 12√

m

∫ 1

0

√
lnN(H, ε, ρS,2) dε. (13)

Note that

lnN(H, ε, ρS,2) ≤ lnM(H, ε, ρS,2) (Claim 4)

≤ d ln
(

4e
ε2 ln

(
2e
ε2

))
(by Lemma 11, M(H, ε, ρS,2) ≤ (4e/ε ln (2e/ε))d)

≤ d ln
(

8e
ε4

)
= d(ln(8e) + 4 ln(1/ε)). (ln x ≤ x/e) (14)

Combining Eq. (13) and (14) and using numerical integration yields

RadDx,m(H) ≤ 12
√
d

m

∫ 1

0

√
(ln(8e) + 4 ln(1/ε)) dε ≤ 31

√
d

m
.

Plugging this into Eq. (12), we obtain

LD(h) ≤ LD(H) + 62
√
d

m
+
√

2 ln(2/δ)
m

≤ LD(H) +O

(√
d+ ln(1/δ)

m

)
.

Thus, taking m as in the statement is sufficient to ensure that LD(h) ≤ LD(H) + ε. J

7 Bibliographic Notes

The Chaining technique was introduced by Dudley [1], and has seen many subsequent
developments and improvements.

We followed the expositions in [2] and in [3, Section 1.9]. See also this excellent video
lecture. Many additional resources on chaining are available from the website (archived) of
the conference on Chaining Methods and their Applications to Computer Science.
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https://youtu.be/6gfrr5VEbtc
https://youtu.be/6gfrr5VEbtc
https://toc.seas.harvard.edu/cmacs-schedule
https://web.archive.org/web/20190921011023/https://toc.seas.harvard.edu/cmacs-schedule
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